Symmetry property and construction of wavelets with a general dilation matrix
暂无分享,去创建一个
[1] Ingrid Daubechies,et al. Ten Lectures on Wavelets , 1992 .
[2] Rong-Qing Jia,et al. Approximation properties of multivariate wavelets , 1998, Math. Comput..
[3] Jelena Kovacevic,et al. Nonseparable multidimensional perfect reconstruction filter banks and wavelet bases for Rn , 1992, IEEE Trans. Inf. Theory.
[4] K. Gröchenig,et al. A new approach to interpolating scaling functions , 1999 .
[5] Zuowei Shen,et al. Multidimensional Interpolatory Subdivision Schemes , 1997 .
[6] Bin Han,et al. Quincunx fundamental refinable functions and quincunx biorthogonal wavelets , 2002, Math. Comput..
[7] Peter Maass. Families of orthogonal two-dimensional wavelets , 1996 .
[8] Lars F. Villemoes. Continuity of Nonseparable Quincunx Wavelets , 1994 .
[9] B. Han. Projectable multivariate refinable functions and biorthogonal wavelets , 2002 .
[10] R. Jia,et al. Optimal Interpolatory Subdivision Schemes in Multidimensional Spaces , 1998 .
[11] Antoine Ayache,et al. Some Methods for Constructing Nonseparable, Orthonormal, Compactly Supported Wavelet Bases , 2001 .
[12] Yang Wang,et al. Arbitrarily smooth orthogonal nonseparable wavelets in R 2 , 1999 .
[13] Gilles Deslauriers,et al. Symmetric iterative interpolation processes , 1989 .
[14] Bin Han,et al. Analysis and Construction of Optimal Multivariate Biorthogonal Wavelets with Compact Support , 1999, SIAM J. Math. Anal..
[15] Bin Han,et al. Computing the Smoothness Exponent of a Symmetric Multivariate Refinable Function , 2002, SIAM J. Matrix Anal. Appl..
[16] I. Daubechies,et al. Non-separable bidimensional wavelets bases. , 1993 .