Structural basis of photosensitivity in a bacterial light-oxygen-voltage/helix-turn-helix (LOV-HTH) DNA-binding protein

Light-oxygen-voltage (LOV) domains are blue light-activated signaling modules integral to a wide range of photosensory proteins. Upon illumination, LOV domains form internal protein-flavin adducts that generate conformational changes which control effector function. Here we advance our understanding of LOV regulation with structural, biophysical, and biochemical studies of EL222, a light-regulated DNA-binding protein. The dark-state crystal structure reveals interactions between the EL222 LOV and helix-turn-helix domains that we show inhibit DNA binding. Solution biophysical data indicate that illumination breaks these interactions, freeing the LOV and helix-turn-helix domains of each other. This conformational change has a key functional effect, allowing EL222 to bind DNA in a light-dependent manner. Our data reveal a conserved signaling mechanism among diverse LOV-containing proteins, where light-induced conformational changes trigger activation via a conserved interaction surface.

[1]  D. Sherman,et al.  Crystal structures of the response regulator DosR from Mycobacterium tuberculosis suggest a helix rearrangement mechanism for phosphorylation activation. , 2008, Journal of molecular biology.

[2]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[3]  Rebecca A. Ayers,et al.  Design and signaling mechanism of light‐regulated histidine kinases , 2009, Journal of molecular biology.

[4]  R. Gunsalus,et al.  Phosphorylation triggers domain separation in the DNA binding response regulator NarL. , 2003, Biochemistry.

[5]  K. Gardner,et al.  Disruption of the LOV-Jalpha helix interaction activates phototropin kinase activity. , 2004, Biochemistry.

[6]  F. Dahlquist,et al.  Effect of phosphorylation on the interdomain interaction of the response regulator, NarL. , 2002, Biochemistry.

[7]  W. P. Russ,et al.  Surface Sites for Engineering Allosteric Control in Proteins , 2008, Science.

[8]  J. Christie,et al.  LOV (light, oxygen, or voltage) domains of the blue-light photoreceptor phototropin (nph1): binding sites for the chromophore flavin mononucleotide. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[9]  S. Henikoff,et al.  Finding protein similarities with nucleotide sequence databases. , 1990, Methods in enzymology.

[10]  K. Gardner,et al.  Estimation of the available free energy in a LOV2-J alpha photoswitch. , 2008, Nature chemical biology.

[11]  R. Gunsalus,et al.  Phosphorylation and dephosphorylation of the NarQ, NarX, and NarL proteins of the nitrate-dependent two-component regulatory system of Escherichia coli , 1994, Journal of bacteriology.

[12]  E. Greenberg,et al.  The C-terminal region of the Vibrio fischeri LuxR protein contains an inducer-independent lux gene activating domain. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[13]  E. Liscum,et al.  Mutations in the NPH1 locus of Arabidopsis disrupt the perception of phototropic stimuli. , 1995, The Plant cell.

[14]  P. Hegemann,et al.  Recording of blue light-induced energy and volume changes within the wild-type and mutated phot-LOV1 domain from Chlamydomonas reinhardtii. , 2004, Biophysical journal.

[15]  Virgil L. Woods,et al.  PAS domain allostery and light-induced conformational changes in photoactive yellow protein upon I2 intermediate formation, probed with enhanced hydrogen/deuterium exchange mass spectrometry. , 2006, Journal of molecular biology.

[16]  A. Nakamura,et al.  Enhancement of a sigma(B)-dependent stress response in Bacillus subtilis by light via YtvA photoreceptor. , 2007, The Journal of general and applied microbiology.

[17]  A. Bax,et al.  Protein backbone angle restraints from searching a database for chemical shift and sequence homology , 1999, Journal of biomolecular NMR.

[18]  Keith Moffat,et al.  The LOV domain family: photoresponsive signaling modules coupled to diverse output domains. , 2003, Biochemistry.

[19]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[20]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[21]  Klaas J. Hellingwerf,et al.  Blue Light Activates the σB-Dependent Stress Response of Bacillus subtilis via YtvA , 2006, Journal of bacteriology.

[22]  Michael Brunner,et al.  Photoadaptation in Neurospora by Competitive Interaction of Activating and Inhibitory LOV Domains , 2010, Cell.

[23]  I. Zhulin,et al.  PAS Domains: Internal Sensors of Oxygen, Redox Potential, and Light , 1999, Microbiology and Molecular Biology Reviews.

[24]  R. Kaptein,et al.  NMR experiments for the study of photointermediates: application to the photoactive yellow protein. , 1999, Journal of magnetic resonance.

[25]  Winslow R. Briggs,et al.  The Photocycle of a Flavin-binding Domain of the Blue Light Photoreceptor Phototropin* , 2001, The Journal of Biological Chemistry.

[26]  R. Dickerson,et al.  Structure of the Escherichia coli response regulator NarL. , 1996, Biochemistry.

[27]  S. C. Winans,et al.  The quorum-sensing transcriptional regulator TraR requires its cognate signaling ligand for protein folding, protease resistance, and dimerization. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Yawen Bai,et al.  Primary structure effects on peptide group hydrogen exchange , 1993, Biochemistry.

[29]  S. Kay,et al.  FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis , 2003, Nature.

[30]  Keith Moffat,et al.  N- and C-terminal flanking regions modulate light-induced signal transduction in the LOV2 domain of the blue light sensor phototropin 1 from Avena sativa. , 2007, Biochemistry.

[31]  Jennifer J. Loros,et al.  Conformational Switching in the Fungal Light Sensor Vivid , 2007, Science.

[32]  M. Nakasako,et al.  Quaternary structure of LOV‐domain containing polypeptide of Arabidopsis FKF1 protein , 2005, FEBS letters.

[33]  Y. Ogura,et al.  AUREOCHROME, a photoreceptor required for photomorphogenesis in stramenopiles , 2007, Proceedings of the National Academy of Sciences.

[34]  Bruce A. Johnson,et al.  NMR View: A computer program for the visualization and analysis of NMR data , 1994, Journal of biomolecular NMR.

[35]  K. Moffat,et al.  Engineered photoreceptors as novel optogenetic tools , 2010, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[36]  Andreas Möglich,et al.  Structural basis for light-dependent signaling in the dimeric LOV domain of the photosensor YtvA. , 2007, Journal of molecular biology.

[37]  S. Grzesiek,et al.  NMRPipe: A multidimensional spectral processing system based on UNIX pipes , 1995, Journal of biomolecular NMR.

[38]  J. Christie,et al.  Photochemical and mutational analysis of the FMN-binding domains of the plant blue light receptor, phototropin. , 2000, Biochemistry.

[39]  Andreas Möglich,et al.  Structure and signaling mechanism of Per-ARNT-Sim domains. , 2009, Structure.

[40]  K. Moffat,et al.  Light-activated DNA binding in a designed allosteric protein , 2008, Proceedings of the National Academy of Sciences.

[41]  K. Henrick,et al.  Inference of macromolecular assemblies from crystalline state. , 2007, Journal of molecular biology.

[42]  B. Kuhlman,et al.  A genetically-encoded photoactivatable Rac controls the motility of living cells , 2009, Nature.

[43]  J. Demoss,et al.  Phosphorylation and dephosphorylation catalyzed in vitro by purified components of the nitrate sensing system, NarX and NarL. , 1993, The Journal of biological chemistry.

[44]  Kevin H. Gardner,et al.  Structural Basis of a Phototropin Light Switch , 2003, Science.

[45]  P. Oeller,et al.  Arabidopsis NPH1: a protein kinase with a putative redox-sensing domain. , 1997, Science.

[46]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[47]  E. P. Greenberg,et al.  Reversible Acyl-Homoserine Lactone Binding to Purified Vibrio fischeri LuxR Protein , 2004, Journal of bacteriology.

[48]  D. Kahn,et al.  Phosphorylation‐induced dimerization of the FixJ receiver domain , 1999, Molecular microbiology.