Sparse Submodular Probabilistic PCA
暂无分享,去创建一个
Oluwasanmi Koyejo | Russell A. Poldrack | Joydeep Ghosh | Rajiv Khanna | Rajiv Khanna | Joydeep Ghosh | Russell A. Poldrack | Oluwasanmi Koyejo
[1] Dimitris S. Papailiopoulos,et al. Sparse PCA through Low-rank Approximations , 2013, ICML.
[2] I. Jolliffe,et al. A Modified Principal Component Technique Based on the LASSO , 2003 .
[3] Oluwasanmi Koyejo,et al. On Prior Distributions and Approximate Inference for Structured Variables , 2014, NIPS.
[4] Alexander J. Smola,et al. Unifying Divergence Minimization and Statistical Inference Via Convex Duality , 2006, COLT.
[5] Xiao-Tong Yuan,et al. Truncated power method for sparse eigenvalue problems , 2011, J. Mach. Learn. Res..
[6] Yurii Nesterov,et al. Generalized Power Method for Sparse Principal Component Analysis , 2008, J. Mach. Learn. Res..
[7] Arthur W. Toga,et al. Automatic independent component labeling for artifact removal in fMRI , 2008, NeuroImage.
[8] I. Jolliffe. Rotation of principal components: choice of normalization constraints , 1995 .
[9] Geoffrey E. Hinton,et al. A View of the Em Algorithm that Justifies Incremental, Sparse, and other Variants , 1998, Learning in Graphical Models.
[10] George Eastman House,et al. Sparse Bayesian Learning and the Relevance Vector Machine , 2001 .
[11] H. Abdi,et al. Principal component analysis , 2010 .
[12] M. L. Fisher,et al. An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..
[13] Gaël Varoquaux,et al. Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..
[14] Magnus Rattray,et al. Dense Message Passing for Sparse Principal Component Analysis , 2010, AISTATS.
[15] P. M. Williams. Bayesian Conditionalisation and the Principle of Minimum Information , 1980, The British Journal for the Philosophy of Science.
[16] Jorge Cadima Departamento de Matematica. Loading and correlations in the interpretation of principle compenents , 1995 .
[17] Gaël Varoquaux,et al. A supervised clustering approach for fMRI-based inference of brain states , 2011, Pattern Recognit..
[18] H. Abdi. Factor Rotations in Factor Analyses , 2003 .
[19] Guillermo Sapiro,et al. Online dictionary learning for sparse coding , 2009, ICML '09.
[20] Jennifer G. Dy,et al. Sparse Probabilistic Principal Component Analysis , 2009, AISTATS.
[21] Mokshay M. Madiman,et al. Information Inequalities for Joint Distributions, With Interpretations and Applications , 2008, IEEE Transactions on Information Theory.
[22] Joachim M. Buhmann,et al. Expectation-maximization for sparse and non-negative PCA , 2008, ICML '08.
[23] Alexandre d'Aspremont,et al. Full regularization path for sparse principal component analysis , 2007, ICML '07.
[24] R. Tibshirani,et al. Sparse Principal Component Analysis , 2006 .
[25] Francis R. Bach,et al. Sparse probabilistic projections , 2008, NIPS.
[26] D.G. Tzikas,et al. The variational approximation for Bayesian inference , 2008, IEEE Signal Processing Magazine.
[27] H. Kaiser. The varimax criterion for analytic rotation in factor analysis , 1958 .
[28] Michael E. Tipping,et al. Probabilistic Principal Component Analysis , 1999 .