Sparse Submodular Probabilistic PCA

We propose a novel approach for sparse probabilistic principal component analysis, that combines a low rank representation for the latent factors and loadings with a novel sparse variational inference approach for estimating distributions of latent variables subject to sparse support constraints. Inference and parameter estimation for the resulting model is achieved via expectation maximization with a novel variational inference method for the E-step that induces sparsity. We show that this inference problem can be reduced to discrete optimal support selection. The discrete optimization is submodular, hence, greedy selection is guaranteed to achieve 1-1/e fraction of the optimal. Empirical studies indicate eectiveness of the proposed approach for the recovery of a parsimonious decomposition as compared to established baseline methods. We also evaluate our method against state-of-the-art methods on high dimensional fMRI data, and show that the method performs as well as or better than other methods.

[1]  Dimitris S. Papailiopoulos,et al.  Sparse PCA through Low-rank Approximations , 2013, ICML.

[2]  I. Jolliffe,et al.  A Modified Principal Component Technique Based on the LASSO , 2003 .

[3]  Oluwasanmi Koyejo,et al.  On Prior Distributions and Approximate Inference for Structured Variables , 2014, NIPS.

[4]  Alexander J. Smola,et al.  Unifying Divergence Minimization and Statistical Inference Via Convex Duality , 2006, COLT.

[5]  Xiao-Tong Yuan,et al.  Truncated power method for sparse eigenvalue problems , 2011, J. Mach. Learn. Res..

[6]  Yurii Nesterov,et al.  Generalized Power Method for Sparse Principal Component Analysis , 2008, J. Mach. Learn. Res..

[7]  Arthur W. Toga,et al.  Automatic independent component labeling for artifact removal in fMRI , 2008, NeuroImage.

[8]  I. Jolliffe Rotation of principal components: choice of normalization constraints , 1995 .

[9]  Geoffrey E. Hinton,et al.  A View of the Em Algorithm that Justifies Incremental, Sparse, and other Variants , 1998, Learning in Graphical Models.

[10]  George Eastman House,et al.  Sparse Bayesian Learning and the Relevance Vector Machine , 2001 .

[11]  H. Abdi,et al.  Principal component analysis , 2010 .

[12]  M. L. Fisher,et al.  An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..

[13]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[14]  Magnus Rattray,et al.  Dense Message Passing for Sparse Principal Component Analysis , 2010, AISTATS.

[15]  P. M. Williams Bayesian Conditionalisation and the Principle of Minimum Information , 1980, The British Journal for the Philosophy of Science.

[16]  Jorge Cadima Departamento de Matematica Loading and correlations in the interpretation of principle compenents , 1995 .

[17]  Gaël Varoquaux,et al.  A supervised clustering approach for fMRI-based inference of brain states , 2011, Pattern Recognit..

[18]  H. Abdi Factor Rotations in Factor Analyses , 2003 .

[19]  Guillermo Sapiro,et al.  Online dictionary learning for sparse coding , 2009, ICML '09.

[20]  Jennifer G. Dy,et al.  Sparse Probabilistic Principal Component Analysis , 2009, AISTATS.

[21]  Mokshay M. Madiman,et al.  Information Inequalities for Joint Distributions, With Interpretations and Applications , 2008, IEEE Transactions on Information Theory.

[22]  Joachim M. Buhmann,et al.  Expectation-maximization for sparse and non-negative PCA , 2008, ICML '08.

[23]  Alexandre d'Aspremont,et al.  Full regularization path for sparse principal component analysis , 2007, ICML '07.

[24]  R. Tibshirani,et al.  Sparse Principal Component Analysis , 2006 .

[25]  Francis R. Bach,et al.  Sparse probabilistic projections , 2008, NIPS.

[26]  D.G. Tzikas,et al.  The variational approximation for Bayesian inference , 2008, IEEE Signal Processing Magazine.

[27]  H. Kaiser The varimax criterion for analytic rotation in factor analysis , 1958 .

[28]  Michael E. Tipping,et al.  Probabilistic Principal Component Analysis , 1999 .