Planktonic Foraminiferal Response to Middle Miocene Cooling in the Southern Ocean (ODP Site 747, Kerguelen Plateau)

The response of planktonic foraminifera to changing oceanographic conditions during Middle Miocene Climate Transition (MMCT) ∼14 million years ago (Ma) at ODP Site 747 (Kergeulen Plateau) is investigated. Faunal changes are presented in the background of sea surface temperature (SST) estimates and multi-taxon &dgr;18O and &dgr;13C data presented in other studies. Four faunal transitions are distinguished between 15.0 and 12.2 Ma. The first two affected only a limited number of taxa, and do not lead to large-scale assemblage reorganizations. They are only minor assemblage changes within the pre-MMCT fauna. The first (14.5–14.4 Ma) is marked by a reduction in the Globorotalia zealandica plexus in favor of the Globorotalia praescitula plexus, coupled with the first signs of increased seasonality. The second (14.3–14.2 Ma) is characterized by recovery and diversification of the G. zealandica plexus and an increase in Turborotalita quinqueloba in response to further enhanced seasonality. The third faunal transition across the Middle Miocene Shift (MMS) in &dgr;18O (13.9–13.8 Ma) affects almost all planktonic foraminifera, leading to dismembering of the pre-MMCT assemblage. These changes were triggered by the SST drop by ∼7°C, followed by reduced sea-surface salinity following the MMS, which favored the opportunistic Neogloboquadrina continuosa. Its dominance spans the transitional period (13.8–13.2 Ma), during which several planktonic foraminiferal events gradually shaped the post-MMCT assemblage. The fourth faunal threshold took place during the hiatus in the ODP Hole 747A record spanning 13.2–12.5 Ma. It is expressed by the establishment of an assemblage dominated by Globorotalia praescitula and Globigerina bulloides in association with diminishing of the low-salinity surface layer. The two dominant taxa exhibit well-defined morphologies, much different from their earlier relatives. The microperforate foraminifera show relatively few morphological changes, probably due to their morphological conservatism. Their changes are thought to herald the large foraminiferal transformations, especially in case of the third and fourth faunal transition thresholds.

[1]  S. Bohaty,et al.  Surface-water cooling and salinity decrease during the Middle Miocene climate transition at Southern Ocean ODP Site 747 (Kerguelen Plateau) , 2010 .

[2]  G. H. Scott,et al.  The Middle Miocene climatic transition in the Southern Ocean: Evidence of paleoclimatic and hydrographic changes at Kerguelen plateau from planktonic foraminifers and stable isotopes , 2009 .

[3]  A. P. Wolfe,et al.  Mid-Miocene cooling and the extinction of tundra in continental Antarctica , 2008, Proceedings of the National Academy of Sciences.

[4]  H. Kawahata,et al.  Seasonal to interannual changes in planktonic foraminiferal assemblages in the northwestern North Pacific: Sediment trap results encompassing a warm period related to El Niño , 2008 .

[5]  K. Darling,et al.  The genetic diversity of planktic foraminifera and the global distribution of ribosomal RNA genotypes , 2008 .

[6]  D. Lea,et al.  Middle Miocene ice sheet dynamics, deep‐sea temperatures, and carbon cycling: A Southern Ocean perspective , 2008 .

[7]  Dick Kroon,et al.  A resolution for the coiling direction paradox in Neogloboquadrina pachyderma. , 2006 .

[8]  C. Hillenbrand,et al.  Drake Passage and Cenozoic climate: An open and shut case? , 2005 .

[9]  D. Lea,et al.  Middle Miocene Southern Ocean Cooling and Antarctic Cryosphere Expansion , 2004, Science.

[10]  R. Schiebel,et al.  Abiotic Forcing of Plankton Evolution in the Cenozoic , 2004, Science.

[11]  A. Shevenell,et al.  Paleoceanographic Change During the Middle Miocene Climate Revolution: An Antarctic Stable Isotope Perspective , 2004 .

[12]  T. Peryt,et al.  Coiling direction in Globigerina bulloides of Middle Miocene age , 2003, Journal of Micropalaeontology.

[13]  Wojciech Majewski,et al.  WATER-DEPTH DISTRIBUTION OF MIOCENE PLANKTONIC FORAMINIFERA FROM ODP SITE 744, SOUTHERN INDIAN OCEAN , 2003 .

[14]  W. Majewski Mid-Miocene invasion of ecological niches by planktonic foraminifera of the Kerguelen Plateau, Antarctica , 2002 .

[15]  D. Schrag,et al.  Paleotemperatures and ice volume of the past 27 Myr revisited with paired Mg/Ca and 18O/16O measurements on benthic foraminifera , 2002 .

[16]  R. Norris,et al.  Evolutionary trends in coiling of tropical Paleogene planktic foraminifera , 2001, Paleobiology.

[17]  D. Kroon,et al.  Molecular evidence for genetic mixing of Arctic and Antarctic subpolar populations of planktonic foraminifers , 2000, Nature.

[18]  H. Elderfield,et al.  Cenozoic deep-Sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite , 2000, Science.

[19]  J. Pawlowski,et al.  Molecular evidence of cryptic speciation in planktonic foraminifers and their relation to oceanic provinces. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[20]  D. Kroon,et al.  The diversity and distribution of modern planktic foraminiferal small subunit ribosomal RNA genotypes and their potential as tracers of present and past ocean circulations , 1999 .

[21]  K. Kohfeld,et al.  Neogloboquadrina pachyderma (sinistral coiling) as paleoceanographic tracers in polar oceans: Evidence from northeast water polynya plankton tows, sediment traps, and surface sediments , 1996 .

[22]  G. H. Scott Coiling excursions in Globorotalia miotumida; high resolution bioevents at the middle-upper Miocene boundary in southern temperate water masses? , 1995 .

[23]  B. Flower,et al.  The middle Miocene climatic transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycling , 1994 .

[24]  F. T. Banner,et al.  Distribution of Microperforate Tenuitellid Planktonic Foraminifers in Holes 747A and 749B, Kerguelen Plateau , 1992 .

[25]  W. Berggren Paleogene Planktonic Foraminifer Magnetobiostratigraphy of the Southern Kerguelen Plateau (Sites 747-749) , 1992 .

[26]  D. Caron,et al.  Effects of gametogenesis on test structure and dissolution of some spinose planktonic foraminifera and implications for test preservation , 1990 .

[27]  S. Savin,et al.  Miocene deepwater oceanography , 1989 .

[28]  Christoph Hemleben,et al.  Modern Planktonic Foraminifera , 1988, Springer New York.

[29]  G. Chaproniere Globigerina woodi from the late Oligocene and early Miocene of southeastern Australia , 1988 .

[30]  R. Cifelli,et al.  Stratigraphic record of the Neogene globorotalid radiation (planktonic foraminiferida) , 1986 .

[31]  R. Thunell,et al.  Seasonal succession of planktonic foraminifera in the subpolar North Pacific , 1985 .

[32]  C. Hemleben,et al.  Field and laboratory studies on the ontogeny and ecology of some globorotaliid species from the Sargasso Sea off Bermuda , 1985 .

[33]  R. Thunell,et al.  Sedimentation of planktonic foraminifera; seasonal changes in species flux in the Panama Basin , 1984 .

[34]  G. Keller,et al.  Paleoceanographic implications of Miocene deep-sea hiatuses , 1983 .

[35]  B. Haq Biogeographic history of Miocene calcareous nannoplankton and paleoceanography of the Atlantic Ocean , 1980 .

[36]  C. Hemleben,et al.  Dissolution effects induced by shell resorption during gametogenesis in Hastigerina pelagica (d'Orbigny) , 1979 .

[37]  A. Hecht,et al.  An ecologic model for test size variation in Recent planktonic foraminifera; applications to the fossil record , 1976 .

[38]  M. Srinivasan,et al.  Secondary Calcification of the Planktonic Foraminifer Neogloboquadrina pachyderma as a Climatic Index , 1974, Science.

[39]  W. Berger Sedimentation of planktonic foraminifera , 1971 .

[40]  E. Boltovskoy Living Planktonic Foraminifera at the 90°E Meridian from the Equator to the Antarctic@@@Living Planktonic Foraminifera at the 90 degrees E Meridian from the Equator to the Antarctic , 1969 .

[41]  J. Kennett Latitudinal Variation in Globigerina pachyderma (Ehrenberg) in Surface Sediments of the Southwest Pacific Ocean , 1968 .

[42]  G. H. Scott,et al.  East Antarctic Ice Sheet fluctuations during the Middle Miocene Climatic Transition inferred from faunal and biogeochemical data on planktonic foraminifera (ODP Hole 747A, Kerguelen Plateau) , 2007 .

[43]  S. Hell,et al.  Resolution of , 2007 .

[44]  W. Berggren NEOGENE PLANKTONIC FORAMINIFER MAGNETOBIOSTRATIGRAPHY OF THE SOUTHERN KERGUELEN PLATEAU ( SITES 747 , 748 , AND 751 ) , 2006 .

[45]  R. Cheloha,et al.  The of a Development , 2004 .

[46]  N. Shackleton,et al.  Changes in coiling direction, habitat depth and abundance in two menardellid species , 2004 .

[47]  B. Malmgren,et al.  Relationship between late Quaternary upwelling history and coiling properties of Neogloboquadrina pachyderma and Globigerina bulloides in the Arabian Sea , 1996 .

[48]  L. Gahagan,et al.  The development of paleoseaways around Antarctica , 1992 .

[49]  G. H. Scott,et al.  Guide To Some Neogene Globorotalids (Foraminiferida) From New Zealand , 1991 .

[50]  W. Berggren,et al.  Neogene planktonic foraminifera: A phylogenetic atlas , 1983 .

[51]  A. Bé Gametogenic calcification in a spinose planktonic foraminifer, Globigerinoides sacculifer (Brady) , 1980 .

[52]  J. Kennett,et al.  Biometric analysis of phenotypic variation in RecentGlobigerina bulloides d'Orbigny in the southern Indian Ocean , 1976 .

[53]  N. Shackleton,et al.  Paleotemperature History of the Cenozoic and the Initiation of Antarctic Glaciation: Oxygen and Carbon Isotope Analyses in DSDP Sites 277, 279 and 281 , 1975 .