Discrete exterior calculus discretization of incompressible Navier-Stokes equations over surface simplicial meshes

A conservative discretization of incompressible Navier-Stokes equations is developed based on discrete exterior calculus (DEC). A distinguishing feature of our method is the use of an algebraic discretization of the interior product operator and a combinatorial discretization of the wedge product. The governing equations are first rewritten using the exterior calculus notation, replacing vector calculus differential operators by the exterior derivative, Hodge star and wedge product operators. The discretization is then carried out by substituting with the corresponding discrete operators based on the DEC framework. Numerical experiments for flows over surfaces reveal a second order accuracy for the developed scheme when using structured-triangular meshes, and first order accuracy for otherwise unstructured meshes. By construction, the method is conservative in that both mass and vorticity are conserved up to machine precision. The relative error in kinetic energy for inviscid flow test cases converges in a second order fashion with both the mesh size and the time step.

[1]  Akio Arakawa,et al.  Integration of the Nondivergent Barotropic Vorticity Equation with AN Icosahedral-Hexagonal Grid for the SPHERE1 , 1968 .

[2]  R. Abraham,et al.  Manifolds, tensor analysis, and applications: 2nd edition , 1988 .

[3]  G. Taylor,et al.  Mechanism of the production of small eddies from large ones , 1937 .

[4]  B. Perot Conservation Properties of Unstructured Staggered Mesh Schemes , 2000 .

[5]  J. Cavendish,et al.  The dual variable method for solving fluid flow difference equations on Delaunay triangulations , 1991 .

[6]  Dan S. Henningson,et al.  High Order Accurate Solution of Flow Past a Circular Cylinder , 2006, J. Sci. Comput..

[7]  Damrong Guoy,et al.  Well-Centered Triangulation , 2008, SIAM J. Sci. Comput..

[8]  Mitutosi Kawaguti,et al.  Numerical Study of a Viscous Fluid Flow past a Circular Cylinder , 1966 .

[9]  L. Polvani,et al.  Wave and vortex dynamics on the surface of a sphere , 1993, Journal of Fluid Mechanics.

[10]  J. Marsden,et al.  Structure-preserving discretization of incompressible fluids , 2009, 0912.3989.

[11]  M. Shashkov,et al.  Compatible spatial discretizations , 2006 .

[12]  Z. J. Wang,et al.  A cartesian grid method for modeling multiple moving objects in 2D incompressible viscous flow , 2003 .

[13]  Yiying Tong,et al.  Stable, circulation-preserving, simplicial fluids , 2007, TOGS.

[14]  S. Majumdar,et al.  Laminar flow past a circular cylinder at reynolds number varying from 50 to 5000 , 2005 .

[15]  Boo Cheong Khoo,et al.  An immersed interface method for viscous incompressible flows involving rigid and flexible boundaries , 2006, J. Comput. Phys..

[16]  E. Grinspun Discrete differential geometry : An applied introduction , 2008, SIGGRAPH 2008.

[17]  D. Arnold,et al.  Finite element exterior calculus: From hodge theory to numerical stability , 2009, 0906.4325.

[18]  J. Blair Perot,et al.  Discrete calculus methods for diffusion , 2007, J. Comput. Phys..

[19]  Ravi Samtaney,et al.  Numerical convergence of discrete exterior calculus on arbitrary surface meshes , 2018, 1802.04506.

[20]  S. Dennis,et al.  Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100 , 1970, Journal of Fluid Mechanics.

[21]  Mark C. Thompson,et al.  Computations of the drag coefficients for low-Reynolds-number flow past rings , 2005, Journal of Fluid Mechanics.

[22]  Anil N. Hirani,et al.  Discrete exterior calculus , 2005, math/0508341.

[23]  E. Cartan,et al.  Leçons sur la géométrie des espaces de Riemann , 1928 .

[24]  R. Abraham,et al.  Manifolds, Tensor Analysis, and Applications , 1983 .

[25]  D. Schmidt,et al.  Accuracy and conservation properties of a three-dimensional unstructured staggered mesh scheme for fluid dynamics , 2002 .

[26]  P. Colella,et al.  A second-order projection method for the incompressible navier-stokes equations , 1989 .

[27]  Jörn Behrens,et al.  Toward goal-oriented R-adaptive models in geophysical fluid dynamics using a generalized discretization approach , 2013 .

[28]  S. Mittal,et al.  Flow past a rotating cylinder , 2003, Journal of Fluid Mechanics.

[29]  R. Nicolaides Direct discretization of planar div-curl problems , 1992 .

[30]  J. Cavendish,et al.  A complementary volume approach for modelling three‐dimensional Navier—Stokes equations using dual delaunay/voronoi tessellations , 1994 .

[32]  F. Giraldo,et al.  Analysis of an Exact Fractional Step Method , 2002 .

[33]  D. Arnold,et al.  Finite element exterior calculus, homological techniques, and applications , 2006, Acta Numerica.

[34]  Anil N. Hirani,et al.  Discrete exterior calculus for variational problems in computer vision and graphics , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[35]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[36]  A. McKenzie HOLA: a High-Order Lie Advection of Discrete Differential Forms With Applications in Fluid Dynamics , 2007 .

[37]  Damrong Guoy,et al.  Well-centered Planar Triangulation - An Iterative Approach , 2008, IMR.

[38]  R. A. Nicolaides,et al.  Flow discretization by complementary volume techniques , 1989 .

[39]  Diana Adler,et al.  Differential Forms With Applications To The Physical Sciences , 2016 .

[40]  Mark Meyer,et al.  Subdivision exterior calculus for geometry processing , 2016, ACM Trans. Graph..

[41]  Jeffrey M. Connors,et al.  Convergence analysis and computational testing of the finite element discretization of the Navier–Stokes alpha model , 2010 .

[42]  Melvin Leok,et al.  A Novel Formulation of Point Vortex Dynamics on the Sphere: Geometrical and Numerical Aspects , 2012, J. Nonlinear Sci..

[43]  Keenan Crane,et al.  Digital geometry processing with discrete exterior calculus , 2013, SIGGRAPH '13.

[44]  Henri Poincaré,et al.  Sur les résidus des intégrales doubles , 1887 .

[45]  Mitutosi Kawaguti,et al.  Numerical Solution of the Navier-Stokes Equations for the Flow around a Circular Cylinder at Reynolds Number 40 , 1953 .

[46]  George Em Karniadakis,et al.  Unstructured spectral element methods for simulation of turbulent flows , 1995 .

[47]  Dilek Funda Kurtulus,et al.  On the Unsteady Behavior of the Flow around NACA 0012 Airfoil with Steady External Conditions at Re=1000 , 2015 .

[48]  J. Blair Perot,et al.  Differential forms for scientists and engineers , 2014, J. Comput. Phys..

[49]  J. Marsden,et al.  Discrete mechanics and variational integrators , 2001, Acta Numerica.

[50]  R. A. Nicolaides Incompressible Computational Fluid Dynamics: The Covolume Approach to Computing Incompressible Flows , 1993 .

[51]  Keenan Crane,et al.  Energy-preserving integrators for fluid animation , 2009, ACM Trans. Graph..

[52]  Anil N. Hirani,et al.  Corrigendum to "Delaunay Hodge star" [Comput. Aided Des. 45 (2013) 540-544] , 2018, Comput. Aided Des..

[53]  Jason Frank,et al.  Conservation Properties of Smoothed Particle Hydrodynamics Applied to the Shallow Water Equation , 2001 .

[54]  J. Blair Perot,et al.  Discrete Conservation Properties of Unstructured Mesh Schemes , 2011 .

[55]  E. Goursat,et al.  Sur certains systèmes d'équations aux différentiels totales et sur une généralisation du problème de Pfaff , 1915 .

[56]  S. Neamtan THE MOTION OF HARMONIC WAVES IN THE ATMOSPHERE , 1946 .

[57]  D. Arnold Finite Element Exterior Calculus , 2018 .

[58]  James C. Cavendish,et al.  SOLUTION OF INCOMPRESSIBLE NAVIER‐STOKES EQUATIONS ON UNSTRUCTURED GRIDS USING DUAL TESSELLATIONS , 1992 .

[59]  R. Becker,et al.  The classical theory of electricity and magnetism , 1932 .

[60]  F. Durst,et al.  Heating effect on steady and unsteady horizontal laminar flow of air past a circular cylinder , 2004 .

[61]  Sadatoshi Taneda,et al.  Experimental Investigation of the Wakes behind Cylinders and Plates at Low Reynolds Numbers , 1956 .

[62]  Yiying Tong,et al.  Discrete differential forms for computational modeling , 2005, SIGGRAPH Courses.

[63]  Anil N. Hirani,et al.  Numerical Method for Darcy Flow Derived Using Discrete Exterior Calculus , 2008, ArXiv.

[64]  U. Ghia,et al.  High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .

[65]  E. Cartan,et al.  Sur certaines expressions différentielles et le problème de Pfaff , 1899 .

[66]  R. A. Nicolaides,et al.  Discretization of incompressible vorticity–velocity equations on triangular meshes , 1990 .

[67]  Axel Voigt,et al.  Discrete Exterior Calculus (DEC) for the Surface Navier-Stokes Equation , 2016, 1611.04392.

[68]  Anil N. Hirani,et al.  Delaunay Hodge star , 2012, Comput. Aided Des..

[69]  Georges de Rham Variétés différentiables : formes, courants, formes harmoniques , 1955 .

[70]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .