Discrete exterior calculus discretization of incompressible Navier-Stokes equations over surface simplicial meshes
暂无分享,去创建一个
[1] Akio Arakawa,et al. Integration of the Nondivergent Barotropic Vorticity Equation with AN Icosahedral-Hexagonal Grid for the SPHERE1 , 1968 .
[2] R. Abraham,et al. Manifolds, tensor analysis, and applications: 2nd edition , 1988 .
[3] G. Taylor,et al. Mechanism of the production of small eddies from large ones , 1937 .
[4] B. Perot. Conservation Properties of Unstructured Staggered Mesh Schemes , 2000 .
[5] J. Cavendish,et al. The dual variable method for solving fluid flow difference equations on Delaunay triangulations , 1991 .
[6] Dan S. Henningson,et al. High Order Accurate Solution of Flow Past a Circular Cylinder , 2006, J. Sci. Comput..
[7] Damrong Guoy,et al. Well-Centered Triangulation , 2008, SIAM J. Sci. Comput..
[8] Mitutosi Kawaguti,et al. Numerical Study of a Viscous Fluid Flow past a Circular Cylinder , 1966 .
[9] L. Polvani,et al. Wave and vortex dynamics on the surface of a sphere , 1993, Journal of Fluid Mechanics.
[10] J. Marsden,et al. Structure-preserving discretization of incompressible fluids , 2009, 0912.3989.
[11] M. Shashkov,et al. Compatible spatial discretizations , 2006 .
[12] Z. J. Wang,et al. A cartesian grid method for modeling multiple moving objects in 2D incompressible viscous flow , 2003 .
[13] Yiying Tong,et al. Stable, circulation-preserving, simplicial fluids , 2007, TOGS.
[14] S. Majumdar,et al. Laminar flow past a circular cylinder at reynolds number varying from 50 to 5000 , 2005 .
[15] Boo Cheong Khoo,et al. An immersed interface method for viscous incompressible flows involving rigid and flexible boundaries , 2006, J. Comput. Phys..
[16] E. Grinspun. Discrete differential geometry : An applied introduction , 2008, SIGGRAPH 2008.
[17] D. Arnold,et al. Finite element exterior calculus: From hodge theory to numerical stability , 2009, 0906.4325.
[18] J. Blair Perot,et al. Discrete calculus methods for diffusion , 2007, J. Comput. Phys..
[19] Ravi Samtaney,et al. Numerical convergence of discrete exterior calculus on arbitrary surface meshes , 2018, 1802.04506.
[20] S. Dennis,et al. Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100 , 1970, Journal of Fluid Mechanics.
[21] Mark C. Thompson,et al. Computations of the drag coefficients for low-Reynolds-number flow past rings , 2005, Journal of Fluid Mechanics.
[22] Anil N. Hirani,et al. Discrete exterior calculus , 2005, math/0508341.
[23] E. Cartan,et al. Leçons sur la géométrie des espaces de Riemann , 1928 .
[24] R. Abraham,et al. Manifolds, Tensor Analysis, and Applications , 1983 .
[25] D. Schmidt,et al. Accuracy and conservation properties of a three-dimensional unstructured staggered mesh scheme for fluid dynamics , 2002 .
[26] P. Colella,et al. A second-order projection method for the incompressible navier-stokes equations , 1989 .
[27] Jörn Behrens,et al. Toward goal-oriented R-adaptive models in geophysical fluid dynamics using a generalized discretization approach , 2013 .
[28] S. Mittal,et al. Flow past a rotating cylinder , 2003, Journal of Fluid Mechanics.
[29] R. Nicolaides. Direct discretization of planar div-curl problems , 1992 .
[30] J. Cavendish,et al. A complementary volume approach for modelling three‐dimensional Navier—Stokes equations using dual delaunay/voronoi tessellations , 1994 .
[32] F. Giraldo,et al. Analysis of an Exact Fractional Step Method , 2002 .
[33] D. Arnold,et al. Finite element exterior calculus, homological techniques, and applications , 2006, Acta Numerica.
[34] Anil N. Hirani,et al. Discrete exterior calculus for variational problems in computer vision and graphics , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).
[35] F. Harlow,et al. Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .
[36] A. McKenzie. HOLA: a High-Order Lie Advection of Discrete Differential Forms With Applications in Fluid Dynamics , 2007 .
[37] Damrong Guoy,et al. Well-centered Planar Triangulation - An Iterative Approach , 2008, IMR.
[38] R. A. Nicolaides,et al. Flow discretization by complementary volume techniques , 1989 .
[39] Diana Adler,et al. Differential Forms With Applications To The Physical Sciences , 2016 .
[40] Mark Meyer,et al. Subdivision exterior calculus for geometry processing , 2016, ACM Trans. Graph..
[41] Jeffrey M. Connors,et al. Convergence analysis and computational testing of the finite element discretization of the Navier–Stokes alpha model , 2010 .
[42] Melvin Leok,et al. A Novel Formulation of Point Vortex Dynamics on the Sphere: Geometrical and Numerical Aspects , 2012, J. Nonlinear Sci..
[43] Keenan Crane,et al. Digital geometry processing with discrete exterior calculus , 2013, SIGGRAPH '13.
[44] Henri Poincaré,et al. Sur les résidus des intégrales doubles , 1887 .
[45] Mitutosi Kawaguti,et al. Numerical Solution of the Navier-Stokes Equations for the Flow around a Circular Cylinder at Reynolds Number 40 , 1953 .
[46] George Em Karniadakis,et al. Unstructured spectral element methods for simulation of turbulent flows , 1995 .
[47] Dilek Funda Kurtulus,et al. On the Unsteady Behavior of the Flow around NACA 0012 Airfoil with Steady External Conditions at Re=1000 , 2015 .
[48] J. Blair Perot,et al. Differential forms for scientists and engineers , 2014, J. Comput. Phys..
[49] J. Marsden,et al. Discrete mechanics and variational integrators , 2001, Acta Numerica.
[50] R. A. Nicolaides. Incompressible Computational Fluid Dynamics: The Covolume Approach to Computing Incompressible Flows , 1993 .
[51] Keenan Crane,et al. Energy-preserving integrators for fluid animation , 2009, ACM Trans. Graph..
[52] Anil N. Hirani,et al. Corrigendum to "Delaunay Hodge star" [Comput. Aided Des. 45 (2013) 540-544] , 2018, Comput. Aided Des..
[53] Jason Frank,et al. Conservation Properties of Smoothed Particle Hydrodynamics Applied to the Shallow Water Equation , 2001 .
[54] J. Blair Perot,et al. Discrete Conservation Properties of Unstructured Mesh Schemes , 2011 .
[55] E. Goursat,et al. Sur certains systèmes d'équations aux différentiels totales et sur une généralisation du problème de Pfaff , 1915 .
[56] S. Neamtan. THE MOTION OF HARMONIC WAVES IN THE ATMOSPHERE , 1946 .
[57] D. Arnold. Finite Element Exterior Calculus , 2018 .
[58] James C. Cavendish,et al. SOLUTION OF INCOMPRESSIBLE NAVIER‐STOKES EQUATIONS ON UNSTRUCTURED GRIDS USING DUAL TESSELLATIONS , 1992 .
[59] R. Becker,et al. The classical theory of electricity and magnetism , 1932 .
[60] F. Durst,et al. Heating effect on steady and unsteady horizontal laminar flow of air past a circular cylinder , 2004 .
[61] Sadatoshi Taneda,et al. Experimental Investigation of the Wakes behind Cylinders and Plates at Low Reynolds Numbers , 1956 .
[62] Yiying Tong,et al. Discrete differential forms for computational modeling , 2005, SIGGRAPH Courses.
[63] Anil N. Hirani,et al. Numerical Method for Darcy Flow Derived Using Discrete Exterior Calculus , 2008, ArXiv.
[64] U. Ghia,et al. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .
[65] E. Cartan,et al. Sur certaines expressions différentielles et le problème de Pfaff , 1899 .
[66] R. A. Nicolaides,et al. Discretization of incompressible vorticity–velocity equations on triangular meshes , 1990 .
[67] Axel Voigt,et al. Discrete Exterior Calculus (DEC) for the Surface Navier-Stokes Equation , 2016, 1611.04392.
[68] Anil N. Hirani,et al. Delaunay Hodge star , 2012, Comput. Aided Des..
[69] Georges de Rham. Variétés différentiables : formes, courants, formes harmoniques , 1955 .
[70] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .