Multi-Objective Archiving

Most multi-objective optimisation algorithms maintain an archive explicitly or implicitly during their search. Such an archive can be solely used to store high-quality solutions presented to the decision maker, but in many cases may participate in the search process (e.g., as the population in evolutionary computation). Over the last two decades, archiving, the process of comparing new solutions with previous ones and deciding how to update the archive/population, stands as an important issue in evolutionary multi-objective optimisation (EMO). This is evidenced by constant efforts from the community on developing various effective archiving methods, ranging from conventional Pareto-based methods to more recent indicator-based and decomposition-based ones. However, the focus of these efforts is on empirical performance comparison in terms of specific quality indicators; there is lack of systematic study of archiving methods from a general theoretical perspective. In this paper, we attempt to conduct a systematic overview of multi-objective archiving, in the hope of paving the way to understand archiving algorithms from a holistic perspective of theory and practice, and more importantly providing a guidance on how to design theoretically desirable and practically useful archiving algorithms. In doing so, we also present that archiving algorithms based on weakly Pareto compliant indicators (e.g., epsilon-indicator), as long as designed properly, can achieve the same theoretical desirables as archivers based on Pareto compliant indicators (e.g., hypervolume indicator). Such desirables include the property limit-optimal, the limit form of the possible optimal property that a bounded archiving algorithm can have with respect to the most general form of superiority between solution sets.

[1]  Lie Meng Pang,et al.  Benchmarking large-scale subset selection in evolutionary multi-objective optimization , 2023, Inf. Sci..

[2]  O. Schütze,et al.  A bounded archive based for bi-objective problems based on distance and e-dominance to avoid cyclic behavior , 2022, GECCO.

[3]  O. Schütze,et al.  A Bounded Archiver for Hausdorff Approximations of the Pareto Front for Multi-Objective Evolutionary Algorithms , 2022, Mathematical and Computational Applications.

[4]  M. Li,et al.  An Effective and Efficient Evolutionary Algorithm for Many-Objective Optimization , 2022, Inf. Sci..

[5]  Wei Li,et al.  Constrained multi-objective evolutionary algorithm with an improved two-archive strategy , 2022, Knowl. Based Syst..

[6]  R. Mallipeddi,et al.  A twin-archive guided decomposition based multi/many-objective evolutionary algorithm , 2022, Swarm Evol. Comput..

[7]  Ming-gang Dong,et al.  A novel two-archive evolutionary algorithm for constrained multi-objective optimization with small feasible regions , 2021, Knowl. Based Syst..

[8]  Hisao Ishibuchi,et al.  A Kernel-Based Indicator for Multi/Many-Objective Optimization , 2021, IEEE Transactions on Evolutionary Computation.

[9]  H. Ishibuchi,et al.  Hypervolume-Optimal μ-Distributions on Line/Plane-Based Pareto Fronts in Three Dimensions , 2021, IEEE Transactions on Evolutionary Computation.

[10]  Tao Chen,et al.  How to Evaluate Solutions in Pareto-Based Search-Based Software Engineering: A Critical Review and Methodological Guidance , 2020, IEEE Transactions on Software Engineering.

[11]  Hisao Ishibuchi,et al.  Clustering-Based Subset Selection in Evolutionary Multiobjective Optimization , 2021, 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC).

[12]  Miqing Li Is Our Archiving Reliable? Multiobjective Archiving Methods on “Simple” Artificial Input Sequences , 2021, ACM Trans. Evol. Learn. Optim..

[13]  Mengjie Zhang,et al.  Two-stage multi-objective genetic programming with archive for uncertain capacitated arc routing problem , 2021, GECCO.

[14]  H. Ishibuchi,et al.  Distance-based subset selection revisited , 2021, GECCO.

[15]  Saúl Zapotecas Martínez,et al.  Pareto compliance from a practical point of view , 2021, GECCO.

[16]  Shengxiang Yang,et al.  A two-archive algorithm with decomposition and fitness allocation for multi-modal multi-objective optimization , 2021, Inf. Sci..

[17]  Xin Yao,et al.  Enhanced Constraint Handling for Reliability-Constrained Multiobjective Testing Resource Allocation , 2021, IEEE Transactions on Evolutionary Computation.

[18]  Alberto Pajares,et al.  A Comparison of Archiving Strategies for Characterization of Nearly Optimal Solutions under Multi-Objective Optimization , 2021, Mathematics.

[19]  Handing Wang,et al.  A Kriging-Assisted Two-Archive Evolutionary Algorithm for Expensive Many-Objective Optimization , 2021, IEEE Transactions on Evolutionary Computation.

[20]  Anping Lin,et al.  Big Archive-Assisted Ensemble of Many-Objective Evolutionary Algorithms , 2021, Complex..

[21]  Hisao Ishibuchi,et al.  A Grid-Based Inverted Generational Distance for Multi/Many-Objective Optimization , 2020, IEEE Transactions on Evolutionary Computation.

[22]  Oliver Schütze,et al.  Archiving Strategies for Evolutionary Multi-objective Optimization Algorithms, 2 , 2021, Studies in Computational Intelligence.

[23]  Hisao Ishibuchi,et al.  Algorithm Configurations of MOEA/D with an Unbounded External Archive , 2020, 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC).

[24]  Hisao Ishibuchi,et al.  Modified Distance-based Subset Selection for Evolutionary Multi-objective Optimization Algorithms , 2020, 2020 IEEE Congress on Evolutionary Computation (CEC).

[25]  Jonathan. E. Fieldsend,et al.  Data structures for non-dominated sets: implementations and empirical assessment of two decades of advances , 2020, GECCO.

[26]  R. M. Hierons,et al.  Many-Objective Test Suite Generation for Software Product Lines , 2020, ACM Trans. Softw. Eng. Methodol..

[27]  Lie Meng Pang,et al.  A New Framework of Evolutionary Multi-Objective Algorithms with an Unbounded External Archive , 2020, ECAI.

[28]  Yong Wang,et al.  A Many-Objective Evolutionary Algorithm with Angle-Based Selection and Shift-Based Density Estimation , 2017, ArXiv.

[29]  Thomas Stützle,et al.  Automatically Designing State-of-the-Art Multi- and Many-Objective Evolutionary Algorithms , 2020, Evolutionary Computation.

[30]  Yong Zhang,et al.  Cost-sensitive feature selection using two-archive multi-objective artificial bee colony algorithm , 2019, Expert Syst. Appl..

[31]  Silviu Maniu,et al.  Hypervolume Subset Selection with Small Subsets , 2019, Evolutionary Computation.

[32]  Tapabrata Ray,et al.  Distance-Based Subset Selection for Benchmarking in Evolutionary Multi/Many-Objective Optimization , 2019, IEEE Transactions on Evolutionary Computation.

[33]  Gary G. Yen,et al.  A Multimodal Multiobjective Evolutionary Algorithm Using Two-Archive and Recombination Strategies , 2019, IEEE Transactions on Evolutionary Computation.

[34]  Thomas Stützle,et al.  Archiver effects on the performance of state-of-the-art multi- and many-objective evolutionary algorithms , 2019, GECCO.

[35]  Dimo Brockhoff,et al.  Benchmarking algorithms from the platypus framework on the biobjective bbob-biobj testbed , 2019, GECCO.

[36]  Xin Yao,et al.  Standing on the shoulders of giants: Seeding search-based multi-objective optimization with prior knowledge for software service composition , 2019, Inf. Softw. Technol..

[37]  Haibo Yu,et al.  A Multi-indicator based Selection Strategy for Evolutionary Many-objective Optimization , 2019, 2019 IEEE Congress on Evolutionary Computation (CEC).

[38]  Tao Li,et al.  A novel two-archive strategy for evolutionary many-objective optimization algorithm based on reference points , 2019, Appl. Soft Comput..

[39]  Xin Yao,et al.  of Birmingham Quality evaluation of solution sets in multiobjective optimisation , 2019 .

[40]  Xin Yao,et al.  An Empirical Investigation of the Optimality and Monotonicity Properties of Multiobjective Archiving Methods , 2019, EMO.

[41]  El-Ghazali Talbi,et al.  Archivers for the representation of the set of approximate solutions for MOPs , 2018, J. Heuristics.

[42]  Zhang Yi,et al.  IGD Indicator-Based Evolutionary Algorithm for Many-Objective Optimization Problems , 2018, IEEE Transactions on Evolutionary Computation.

[43]  Xin Yao,et al.  Two-Archive Evolutionary Algorithm for Constrained Multiobjective Optimization , 2017, IEEE Transactions on Evolutionary Computation.

[44]  Jitender Kumar Chhabra,et al.  TA-ABC: Two-Archive Artificial Bee Colony for Multi-objective Software Module Clustering Problem , 2018, J. Intell. Syst..

[45]  Hisao Ishibuchi,et al.  How to Specify a Reference Point in Hypervolume Calculation for Fair Performance Comparison , 2018, Evolutionary Computation.

[46]  Ye Tian,et al.  An Indicator-Based Multiobjective Evolutionary Algorithm With Reference Point Adaptation for Better Versatility , 2018, IEEE Transactions on Evolutionary Computation.

[47]  M. Emmerich,et al.  A tutorial on multiobjective optimization: fundamentals and evolutionary methods , 2018, Natural Computing.

[48]  Xin Yao,et al.  Multiline Distance Minimization: A Visualized Many-Objective Test Problem Suite , 2018, IEEE Transactions on Evolutionary Computation.

[49]  Xin Yao,et al.  Dynamic Multiobjectives Optimization With a Changing Number of Objectives , 2016, IEEE Transactions on Evolutionary Computation.

[50]  Andrzej Jaszkiewicz,et al.  ND-Tree-Based Update: A Fast Algorithm for the Dynamic Nondominance Problem , 2016, IEEE Transactions on Evolutionary Computation.

[51]  Michael T. M. Emmerich,et al.  Maximum Volume Subset Selection for Anchored Boxes , 2018, SoCG.

[52]  Hisao Ishibuchi,et al.  Benchmarking Multi- and Many-Objective Evolutionary Algorithms Under Two Optimization Scenarios , 2017, IEEE Access.

[53]  Xin Yao,et al.  What Weights Work for You? Adapting Weights for Any Pareto Front Shape in Decomposition-Based Evolutionary Multiobjective Optimisation , 2017, Evolutionary Computation.

[54]  Jonathan E. Fieldsend,et al.  University staff teaching allocation: formulating and optimising a many-objective problem , 2017, GECCO.

[55]  Akira Oyama,et al.  Benchmarking MOEAs for multi- and many-objective optimization using an unbounded external archive , 2017, GECCO.

[56]  Dipti Srinivasan,et al.  A Survey of Multiobjective Evolutionary Algorithms Based on Decomposition , 2017, IEEE Transactions on Evolutionary Computation.

[57]  Hisao Ishibuchi,et al.  Performance of Decomposition-Based Many-Objective Algorithms Strongly Depends on Pareto Front Shapes , 2017, IEEE Transactions on Evolutionary Computation.

[58]  Laetitia Vermeulen-Jourdan,et al.  Automatically Configuring Multi-objective Local Search Using Multi-objective Optimisation , 2017, EMO.

[59]  Xin Yao,et al.  Dominance Move: A Measure of Comparing Solution Sets in Multiobjective Optimization , 2017, ArXiv.

[60]  Tobias Glasmachers,et al.  A Fast Incremental BSP Tree Archive for Non-dominated Points , 2016, EMO.

[61]  T. Stützle,et al.  Automatic Component-wise Design of Multi-Objective Evolutionary Algorithms , 2014 .

[62]  Shengxiang Yang,et al.  Pareto or Non-Pareto: Bi-Criterion Evolution in Multiobjective Optimization , 2016, IEEE Transactions on Evolutionary Computation.

[63]  José Francisco Aldana Montes,et al.  A Study of Archiving Strategies in Multi-objective PSO for Molecular Docking , 2016, ANTS Conference.

[64]  Carlos M. Fonseca,et al.  Hypervolume Subset Selection in Two Dimensions: Formulations and Algorithms , 2016, Evolutionary Computation.

[65]  Oswin Krause,et al.  Unbounded Population MO-CMA-ES for the Bi-Objective BBOB Test Suite , 2016, GECCO.

[66]  G. Rudolph,et al.  Optimal averaged Hausdorff archives for bi-objective problems: theoretical and numerical results , 2016, Comput. Optim. Appl..

[67]  Xin Yao,et al.  Stochastic Ranking Algorithm for Many-Objective Optimization Based on Multiple Indicators , 2016, IEEE Transactions on Evolutionary Computation.

[68]  Gary G. Yen,et al.  Many-Objective Evolutionary Algorithm: Objective Space Reduction and Diversity Improvement , 2016, IEEE Transactions on Evolutionary Computation.

[69]  Saúl Zapotecas Martínez,et al.  Approaches for Many-Objective Optimization: Analysis and Comparison on MNK-Landscapes , 2015, Artificial Evolution.

[70]  Jun Zhang,et al.  An Evolutionary Algorithm with Double-Level Archives for Multiobjective Optimization , 2015, IEEE Transactions on Cybernetics.

[71]  Qingfu Zhang,et al.  An External Archive Guided Multiobjective Evolutionary Algorithm Based on Decomposition for Combinatorial Optimization , 2015, IEEE Transactions on Evolutionary Computation.

[72]  Shengxiang Yang,et al.  A Performance Comparison Indicator for Pareto Front Approximations in Many-Objective Optimization , 2015, GECCO.

[73]  Thomas Stützle,et al.  Anytime Pareto local search , 2015, Eur. J. Oper. Res..

[74]  Hisao Ishibuchi,et al.  Modified Distance Calculation in Generational Distance and Inverted Generational Distance , 2015, EMO.

[75]  Marco César Goldbarg,et al.  Analyzing Limited Size Archivers of Multi-objective Optimizers , 2014, 2014 Brazilian Conference on Intelligent Systems.

[76]  Tobias Friedrich,et al.  Generic Postprocessing via Subset Selection for Hypervolume and Epsilon-Indicator , 2014, PPSN.

[77]  Sébastien Vérel,et al.  Local Optimal Sets and Bounded Archiving on Multi-objective NK-Landscapes with Correlated Objectives , 2014, PPSN.

[78]  Kalyanmoy Deb,et al.  An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints , 2014, IEEE Transactions on Evolutionary Computation.

[79]  Tobias Friedrich,et al.  Convergence of Hypervolume-Based Archiving Algorithms , 2014, IEEE Transactions on Evolutionary Computation.

[80]  Karl Bringmann,et al.  Two-dimensional subset selection for hypervolume and epsilon-indicator , 2014, GECCO.

[81]  Xin Yao,et al.  An improved Two Archive Algorithm for Many-Objective optimization , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[82]  Shengxiang Yang,et al.  Shift-Based Density Estimation for Pareto-Based Algorithms in Many-Objective Optimization , 2014, IEEE Transactions on Evolutionary Computation.

[83]  Fang Liu,et al.  MOEA/D with Adaptive Weight Adjustment , 2014, Evolutionary Computation.

[84]  John A. W. McCall,et al.  D2MOPSO: MOPSO Based on Decomposition and Dominance with Archiving Using Crowding Distance in Objective and Solution Spaces , 2014, Evolutionary Computation.

[85]  Shengxiang Yang,et al.  A Grid-Based Evolutionary Algorithm for Many-Objective Optimization , 2013, IEEE Transactions on Evolutionary Computation.

[86]  Jianhua Zheng,et al.  Multi-objective Scatter Search with External Archive for Portfolio Optimization , 2013, IJCCI.

[87]  Sébastien Vérel,et al.  On the structure of multiobjective combinatorial search space: MNK-landscapes with correlated objectives , 2013, Eur. J. Oper. Res..

[88]  Günter Rudolph,et al.  Evenly Spaced Pareto Front Approximations for Tricriteria Problems Based on Triangulation , 2013, EMO.

[89]  Shengxiang Yang,et al.  A Comparative Study on Evolutionary Algorithms for Many-Objective Optimization , 2013, EMO.

[90]  Joseph R. Kasprzyk,et al.  Evolutionary multiobjective optimization in water resources: The past, present, and future , 2012 .

[91]  Peter A. N. Bosman,et al.  Elitist Archiving for Multi-Objective Evolutionary Algorithms: To Adapt or Not to Adapt , 2012, PPSN.

[92]  Carlos A. Coello Coello,et al.  Using the Averaged Hausdorff Distance as a Performance Measure in Evolutionary Multiobjective Optimization , 2012, IEEE Transactions on Evolutionary Computation.

[93]  Heike Trautmann,et al.  On the properties of the R2 indicator , 2012, GECCO '12.

[94]  Aurora Trinidad Ramirez Pozo,et al.  Using archiving methods to control convergence and diversity for Many-Objective Problems in Particle Swarm Optimization , 2012, 2012 IEEE Congress on Evolutionary Computation.

[95]  Markus Wagner,et al.  An adaptive data structure for evolutionary multi-objective algorithms with unbounded archives , 2012, 2012 IEEE Congress on Evolutionary Computation.

[96]  El-Ghazali Talbi,et al.  On dominance-based multiobjective local search: design, implementation and experimental analysis on scheduling and traveling salesman problems , 2012, J. Heuristics.

[97]  Anne Auger,et al.  Hypervolume-based multiobjective optimization: Theoretical foundations and practical implications , 2012, Theor. Comput. Sci..

[98]  Tobias Friedrich,et al.  Approximating the least hypervolume contributor: NP-hard in general, but fast in practice , 2008, Theor. Comput. Sci..

[99]  Marco Laumanns,et al.  Stochastic convergence of random search methods to fixed size Pareto front approximations , 2011, Eur. J. Oper. Res..

[100]  Marco Laumanns,et al.  On Sequential Online Archiving of Objective Vectors , 2011, EMO.

[101]  Kalyanmoy Deb,et al.  AMGA2: improving the performance of the archive-based micro-genetic algorithm for multi-objective optimization , 2011 .

[102]  Massimiliano Vasile,et al.  Computing the Set of Epsilon-Efficient Solutions in Multiobjective Space Mission Design , 2011, J. Aerosp. Comput. Inf. Commun..

[103]  Thomas Stützle,et al.  Improving the anytime behavior of two-phase local search , 2011, Annals of Mathematics and Artificial Intelligence.

[104]  Huidong Jin,et al.  Adaptive, convergent, and diversified archiving strategy for multiobjective evolutionary algorithms , 2010, Expert Syst. Appl..

[105]  Lothar Thiele,et al.  Defining and Optimizing Indicator-Based Diversity Measures in Multiobjective Search , 2010, PPSN.

[106]  Tobias Friedrich,et al.  Tight Bounds for the Approximation Ratio of the Hypervolume Indicator , 2010, PPSN.

[107]  Tobias Friedrich,et al.  The maximum hypervolume set yields near-optimal approximation , 2010, GECCO '10.

[108]  Hod Lipson,et al.  Age-fitness pareto optimization , 2010, GECCO '10.

[109]  Jacques Teghem,et al.  Two-phase Pareto local search for the biobjective traveling salesman problem , 2010, J. Heuristics.

[110]  Jyrki Wallenius,et al.  Quantitative Comparison of Approximate Solution Sets for Multicriteria Optimization Problems with Weighted Tchebycheff Preference Function , 2010, Oper. Res..

[111]  Lothar Thiele,et al.  On Set-Based Multiobjective Optimization , 2010, IEEE Transactions on Evolutionary Computation.

[112]  Mihalis Yannakakis,et al.  How good is the Chord algorithm? , 2010, SODA '10.

[113]  Mihalis Yannakakis,et al.  Small Approximate Pareto Sets for Biobjective Shortest Paths and Other Problems , 2009, SIAM J. Comput..

[114]  Joshua D. Knowles Closed-loop evolutionary multiobjective optimization , 2009, IEEE Computational Intelligence Magazine.

[115]  Tobias Friedrich,et al.  Don't be greedy when calculating hypervolume contributions , 2009, FOGA '09.

[116]  Qingfu Zhang,et al.  Multiobjective optimization Test Instances for the CEC 2009 Special Session and Competition , 2009 .

[117]  Marco Laumanns,et al.  Convergence of stochastic search algorithms to finite size pareto set approximations , 2008, J. Glob. Optim..

[118]  Frank Neumann,et al.  Benefits and drawbacks for the use of epsilon-dominance in evolutionary multi-objective optimization , 2008, GECCO '08.

[119]  Mihalis Yannakakis,et al.  Succinct approximate convex pareto curves , 2008, SODA '08.

[120]  Tomasz Radzik,et al.  Computing all efficient solutions of the biobjective minimum spanning tree problem , 2008, Comput. Oper. Res..

[121]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[122]  Peter J. Fleming,et al.  On the Evolutionary Optimization of Many Conflicting Objectives , 2007, IEEE Transactions on Evolutionary Computation.

[123]  Nicola Beume,et al.  SMS-EMOA: Multiobjective selection based on dominated hypervolume , 2007, Eur. J. Oper. Res..

[124]  Nicola Beume,et al.  Pareto-, Aggregation-, and Indicator-Based Methods in Many-Objective Optimization , 2007, EMO.

[125]  Stefan Roth,et al.  Covariance Matrix Adaptation for Multi-objective Optimization , 2007, Evolutionary Computation.

[126]  Thomas Hanne,et al.  A multiobjective evolutionary algorithm for approximating the efficient set , 2007, Eur. J. Oper. Res..

[127]  Xin Yao,et al.  A New Multi-objective Evolutionary Optimisation Algorithm: The Two-Archive Algorithm , 2006, 2006 International Conference on Computational Intelligence and Security.

[128]  Lothar Thiele,et al.  A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers , 2006 .

[129]  Kalyanmoy Deb,et al.  Evaluating the -Domination Based Multi-Objective Evolutionary Algorithm for a Quick Computation of Pareto-Optimal Solutions , 2005, Evolutionary Computation.

[130]  Christos H. Papadimitriou,et al.  Approximately dominating representatives , 2005, Theor. Comput. Sci..

[131]  Marco Laumanns,et al.  Scalable Test Problems for Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[132]  Sergei Vassilvitskii,et al.  Efficiently computing succinct trade-off curves , 2005, Theor. Comput. Sci..

[133]  Eckart Zitzler,et al.  Indicator-Based Selection in Multiobjective Search , 2004, PPSN.

[134]  Carlos A. Coello Coello,et al.  A Study of the Parallelization of a Coevolutionary Multi-objective Evolutionary Algorithm , 2004, MICAI.

[135]  David Corne,et al.  Bounded Pareto Archiving: Theory and Practice , 2004, Metaheuristics for Multiobjective Optimisation.

[136]  Marco Laumanns,et al.  A Tutorial on Evolutionary Multiobjective Optimization , 2004, Metaheuristics for Multiobjective Optimisation.

[137]  Thomas Stützle,et al.  Pareto Local Optimum Sets in the Biobjective Traveling Salesman Problem: An Experimental Study , 2004, Metaheuristics for Multiobjective Optimisation.

[138]  Joshua D. Knowles,et al.  Bounded archiving using the lebesgue measure , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[139]  Joshua D. Knowles,et al.  Some multiobjective optimizers are better than others , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[140]  Susanne Albers,et al.  Online algorithms: a survey , 2003, Math. Program..

[141]  Jonathan E. Fieldsend,et al.  Using unconstrained elite archives for multiobjective optimization , 2003, IEEE Trans. Evol. Comput..

[142]  Thomas Stützle,et al.  A Two-Phase Local Search for the Biobjective Traveling Salesman Problem , 2003, EMO.

[143]  David W. Corne,et al.  Properties of an adaptive archiving algorithm for storing nondominated vectors , 2003, IEEE Trans. Evol. Comput..

[144]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[145]  Marco Laumanns,et al.  Combining Convergence and Diversity in Evolutionary Multiobjective Optimization , 2002, Evolutionary Computation.

[146]  M. Farina,et al.  On the optimal solution definition for many-criteria optimization problems , 2002, 2002 Annual Meeting of the North American Fuzzy Information Processing Society Proceedings. NAFIPS-FLINT 2002 (Cat. No. 02TH8622).

[147]  Marco Laumanns,et al.  Archiving With Guaranteed Convergence And Diversity In Multi-objective Optimization , 2002, GECCO.

[148]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[149]  Joshua D. Knowles Local-search and hybrid evolutionary algorithms for Pareto optimization , 2002 .

[150]  Marco Laumanns,et al.  SPEA2: Improving the Strength Pareto Evolutionary Algorithm For Multiobjective Optimization , 2002 .

[151]  Jonathan E. Fieldsend,et al.  Full Elite Sets for Multi-Objective Optimisation , 2002 .

[152]  Martin J. Oates,et al.  PESA-II: region-based selection in evolutionary multiobjective optimization , 2001 .

[153]  H. Kita,et al.  Failure of Pareto-based MOEAs: does non-dominated really mean near to optimal? , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[154]  Thomas Hanne,et al.  Global Multiobjective Optimization with Evolutionary Algorithms: Selection Mechanisms and Mutation Control , 2001, EMO.

[155]  Mihalis Yannakakis,et al.  On the approximability of trade-offs and optimal access of Web sources , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[156]  Günter Rudolph,et al.  Convergence properties of some multi-objective evolutionary algorithms , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[157]  Joshua D. Knowles,et al.  M-PAES: a memetic algorithm for multiobjective optimization , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[158]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[159]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[160]  Thomas Hanne,et al.  On the convergence of multiobjective evolutionary algorithms , 1999, Eur. J. Oper. Res..

[161]  David Corne,et al.  The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[162]  Gary B. Lamont,et al.  Multiobjective evolutionary algorithms: classifications, analyses, and new innovations , 1999 .

[163]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[164]  Hisao Ishibuchi,et al.  A multi-objective genetic local search algorithm and its application to flowshop scheduling , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[165]  Günter Rudolph,et al.  Evolutionary Search for Minimal Elements in Partially Ordered Finite Sets , 1998, Evolutionary Programming.

[166]  Allan Borodin,et al.  Online computation and competitive analysis , 1998 .

[167]  M. Hansen,et al.  Evaluating the quality of approximations to the non-dominated set , 1998 .

[168]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[169]  Peter J. Fleming,et al.  An Overview of Evolutionary Algorithms in Multiobjective Optimization , 1995, Evolutionary Computation.

[170]  Frank Kursawe,et al.  A Variant of Evolution Strategies for Vector Optimization , 1990, PPSN.

[171]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .