Toward computational screening in heterogeneous catalysis: Pareto-optimal methanation catalysts

Abstract Finding the solids that are the best catalysts for a given reaction is a daunting task due to the large number of combinations and structures of multicomponent surfaces. In addition, it is not only the reaction rate that needs to be optimized; the selectivity, durability, and cost must also be taken into account. Here we propose a computational screening approach and apply it to design a new metal alloy catalyst for the methanation reaction (CO + 3H2 → CH4 + H2O).

[1]  J. Nørskov,et al.  A general scheme for the estimation of oxygen binding energies on binary transition metal surface alloys , 2005 .

[2]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[3]  Arun S. Mujumdar,et al.  Introduction to Surface Chemistry and Catalysis , 1994 .

[4]  Astrid Boisen,et al.  Optimal Catalyst Curves: Connecting Density Functional Theory Calculations with Industrial Reactor Design and Catalyst Selection , 2002 .

[5]  Xinli Zhu,et al.  Partial oxidation of methane to syngas over glow discharge plasma treated Ni–Fe/Al2O3 catalyst , 2004 .

[6]  J. Nørskov,et al.  Structure Sensitivity of CO Dissociation on Rh Surfaces , 2002 .

[7]  J. Yates,et al.  Kinetics of the hydrogenation of CO over a single crystal nickel catalyst , 1980 .

[8]  S. Linic,et al.  Control of ethylene epoxidation selectivity by surface oxametallacycles. , 2003, Journal of the American Chemical Society.

[9]  M. Vannice,et al.  The catalytic synthesis of hydrocarbons from H2CO mixtures over the Group VIII metals: V. The catalytic behavior of silica-supported metals , 1977 .

[10]  J. Nørskov,et al.  Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals , 1999 .

[11]  Daan Frenkel,et al.  The steady state of heterogeneous catalysis, studied by first-principles statistical mechanics. , 2004, Physical review letters.

[12]  J. Nørskov,et al.  Universality in Heterogeneous Catalysis , 2002 .

[13]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[14]  K. Kobayashi,et al.  Mechanochemical activation of catalysts for CO2 methanation , 1996 .

[15]  Hannes Jonsson,et al.  Reversible work transition state theory: application to dissociative adsorption of hydrogen , 1995 .

[16]  Vilfredo Pareto,et al.  Manuale di economia politica , 1965 .

[17]  T. Zubkov,et al.  The effect of atomic steps on adsorption and desorption of CO on Ru( 1 0 9 ) , 2003 .

[18]  Thomas Bligaard,et al.  Pareto-optimal alloys , 2003 .

[19]  J. Nørskov,et al.  Ammonia Synthesis from First-Principles Calculations , 2005, Science.

[20]  T. Ishihara,et al.  Hydrogenation of carbon monoxide over SiO2-supported Fe-Co, Co-Ni and Ni-Fe bimetallic catalysts , 1987 .

[21]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[22]  B S Clausen,et al.  Catalyst design by interpolation in the periodic table: bimetallic ammonia synthesis catalysts. , 2001, Journal of the American Chemical Society.

[23]  Thomas Bligaard,et al.  The Brønsted–Evans–Polanyi relation and the volcano curve in heterogeneous catalysis , 2004 .

[24]  Kiyoshi Otsuka,et al.  Complete removal of carbon monoxide in hydrogen-rich gas stream through methanation over supported metal catalysts , 2004 .

[25]  G. Aguilar‐Ríos,et al.  Physicochemical and catalytic properties of iron‐promoted Raney‐nickel catalysts obtained by mechanical alloying , 1999 .

[26]  Søren Dahl,et al.  Methanation of CO over nickel: Mechanism and kinetics at high H2/CO ratios. , 2005, The journal of physical chemistry. B.

[27]  J. Nørskov,et al.  On the Compensation Effect in Heterogeneous Catalysis , 2003 .