Indistinguishability of causal relations from limited marginals
暂无分享,去创建一个
Rafael Chaves | Costantino Budroni | Nikolai Miklin | R. Chaves | C. Budroni | N. Miklin | Costantino Budroni
[1] C. Budroni,et al. The extension problem for partial Boolean structures in quantum mechanics , 2010, 1010.4662.
[2] Robert B. Ash,et al. Information Theory , 2020, The SAGE International Encyclopedia of Mass Media and Society.
[3] R. Chaves. Entropic inequalities as a necessary and sufficient condition to noncontextuality and locality , 2013, 1301.5714.
[4] F. Matús,et al. Two Constructions on Limits of Entropy Functions , 2007, IEEE Transactions on Information Theory.
[5] Nikolai K. Vereshchagin,et al. A new class of non-Shannon-type inequalities for entropies , 2002, Commun. Inf. Syst..
[6] Sudha,et al. Macrorealism from entropic Leggett-Garg inequalities , 2012, 1208.4491.
[7] Jiri Vomlel. Methods Of Probabilistic Knowledge Integration , 1999 .
[8] Catriel Beeri,et al. On the Desirability of Acyclic Database Schemes , 1983, JACM.
[9] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[10] C. J. Wood,et al. The lesson of causal discovery algorithms for quantum correlations: causal explanations of Bell-inequality violations require fine-tuning , 2012, 1208.4119.
[11] H. Kellerer. Verteilungsfunktionen mit gegebenen Marginalverteilungen , 1964 .
[12] Marco T'ulio Quintino,et al. All noncontextuality inequalities for the n-cycle scenario , 2012, 1206.3212.
[13] A. Winter,et al. Information causality as a physical principle , 2009, Nature.
[14] Matthew F Pusey,et al. Theory-independent limits on correlations from generalized Bayesian networks , 2014, 1405.2572.
[15] Tobias Fritz,et al. Beyond Bell’s Theorem II: Scenarios with Arbitrary Causal Structure , 2014, 1404.4812.
[16] A. Falcon. Physics I.1 , 2018 .
[17] Matthias Christandl,et al. Entanglement Polytopes: Multiparticle Entanglement from Single-Particle Information , 2012, Science.
[18] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[19] Ram Ramamoorthy,et al. Proceedings of the 30th Conference on Uncertainty in Artificial Intelligence , 2014 .
[20] Zhen Zhang. On a new non-Shannon type information inequality , 2003, Commun. Inf. Syst..
[21] Bernd Sturmfels,et al. Algebraic geometry of Bayesian networks , 2005, J. Symb. Comput..
[22] Costantino Budroni,et al. Bell inequalities from variable-elimination methods , 2011, 1112.5876.
[23] I. Pitowsky. Quantum Probability ― Quantum Logic , 1989 .
[24] C. Budroni,et al. Bell Inequalities as Constraints on Unmeasurable Correlations , 2011, 1103.3644.
[25] A. E. Rastegin,et al. Formulation of Leggett—Garg Inequalities in Terms of q-Entropies , 2014, 1403.6945.
[26] Christian Majenz,et al. Information–theoretic implications of quantum causal structures , 2014, Nature Communications.
[27] Č. Brukner,et al. A graph-separation theorem for quantum causal models , 2014, 1406.0430.
[28] Zhen Zhang,et al. On Characterization of Entropy Function via Information Inequalities , 1998, IEEE Trans. Inf. Theory.
[29] F. M. Malvestuto. Existence of extensions and product extensions for discrete probability distributions , 1988, Discret. Math..
[30] Itamar Pitowsky,et al. Correlation polytopes: Their geometry and complexity , 1991, Math. Program..
[31] Matthias Christandl,et al. Pinning of fermionic occupation numbers. , 2012, Physical review letters.
[32] Pinar Heggernes,et al. Minimal triangulations of graphs: A survey , 2006, Discret. Math..
[33] T. Fritz,et al. Entropic approach to local realism and noncontextuality , 2012, 1201.3340.
[34] A. J. Short,et al. Information causality from an entropic and a probabilistic perspective , 2011, 1107.4031.
[35] Nihat Ay,et al. Information-theoretic inference of common ancestors , 2010, Entropy.
[36] Moritz Grosse-Wentrup,et al. Quantifying causal influences , 2012, 1203.6502.
[37] Sadegh Raeisi,et al. Entropic Tests of Multipartite Nonlocality and State-Independent Contextuality. , 2015, Physical review letters.
[38] Yang Yang,et al. Experimental investigation of the information entropic Bell inequality , 2016, Scientific Reports.
[39] R. Colbeck,et al. Inability of the entropy vector method to certify nonclassicality in linelike causal structures , 2016, 1603.02553.
[40] Fabio Costa,et al. Quantum causal modelling , 2015, 1512.07106.
[41] L. Goddard. Information Theory , 1962, Nature.
[42] A. J. Short,et al. Entropy in general physical theories , 2009, 0909.4801.
[43] Rafael Chaves,et al. Device-independent tests of entropy. , 2015, Physical review letters.
[44] J. Bell. On the Einstein-Podolsky-Rosen paradox , 1964 .
[45] Dagomir Kaszlikowski,et al. Information-theoretic metric as a tool to investigate nonclassical correlations , 2014 .
[46] H. Barnum,et al. Entropy and information causality in general probabilistic theories , 2009, 0909.5075.
[47] Dagomir Kaszlikowski,et al. Information-theoretic Bell inequalities based on Tsallis entropy , 2014, 1410.4623.
[48] B. Schoelkopf,et al. Algorithmic independence of initial condition and dynamical law in thermodynamics and causal inference , 2015, 1512.02057.
[49] D. Vernon. Inform , 1995, Encyclopedia of the UN Sustainable Development Goals.
[50] Frantisek Matús,et al. Adhesivity of polymatroids , 2007, Discret. Math..
[51] R. Spekkens,et al. Towards a formulation of quantum theory as a causally neutral theory of Bayesian inference , 2011, 1107.5849.
[52] Rafael Chaves,et al. Polynomial Bell Inequalities. , 2015, Physical review letters.
[53] R Chaves,et al. Unifying framework for relaxations of the causal assumptions in Bell's theorem. , 2014, Physical review letters.
[54] Alexey E. Rastegin,et al. On generalized entropies and information-theoretic Bell inequalities under decoherence , 2014, 1410.7889.
[55] Sidney Rosenbaum. Precursors of the, Journal of the Royal Statistical Society , 2001 .
[56] Rafael Chaves,et al. Entropic Inequalities and Marginal Problems , 2011, IEEE Transactions on Information Theory.
[57] N. Gisin,et al. Characterizing the nonlocal correlations created via entanglement swapping. , 2010, Physical review letters.
[58] Rafael Chaves,et al. Entropic Nonsignaling Correlations. , 2016, Physical review letters.
[59] Andreas J. Winter,et al. Infinitely Many Constrained Inequalities for the von Neumann Entropy , 2011, IEEE Transactions on Information Theory.
[60] Mi Heggie,et al. Journal of Physics: Conference Series: Preface , 2011 .
[61] N. N. Vorob’ev. Markov Measures and Markov Extensions , 1963 .
[62] A. Winter,et al. A New Inequality for the von Neumann Entropy , 2004, quant-ph/0406162.
[63] Nicolas Gisin,et al. Nonlinear Bell Inequalities Tailored for Quantum Networks. , 2015, Physical review letters.
[64] Robin Hartshorne,et al. Algebraic geometry , 1977, Graduate texts in mathematics.
[65] Nir Friedman,et al. Inferring Cellular Networks Using Probabilistic Graphical Models , 2004, Science.
[66] A. Fine. Hidden Variables, Joint Probability, and the Bell Inequalities , 1982 .
[67] Ericka Stricklin-Parker,et al. Ann , 2005 .
[68] D. Kaszlikowski,et al. Entropic test of quantum contextuality. , 2012, Physical review letters.
[69] L. Schmetterer. Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete. , 1963 .
[70] T. Fritz. Beyond Bell's theorem: correlation scenarios , 2012, 1206.5115.
[71] Raymond W. Yeung,et al. Information Theory and Network Coding , 2008 .
[72] Franz von Kutschera,et al. Causation , 1993, J. Philos. Log..
[73] S. Braunstein,et al. Information-theoretic Bell inequalities. , 1988, Physical review letters.
[74] A. Klyachko. Quantum marginal problem and N-representability , 2005, quant-ph/0511102.
[75] D. Gross,et al. Causal structures from entropic information: geometry and novel scenarios , 2013, 1310.0284.
[76] N. J. Cerf,et al. Entropic Bell inequalities , 1997 .
[77] Aaas News,et al. Book Reviews , 1893, Buffalo Medical and Surgical Journal.
[78] A. Shimony,et al. Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .