An Analysis of Cloud Liquid Water Feedback and Global Climate Sensitivity in a General Circulation Model

Abstract A set of general circulation model simulations is analyzed to determine how cloud distribution and cloud radiative properties might change as climate warms and to isolate and quantify the various feedback effects of clouds on climate sensitivity. For this study the NCAR Community Climate Model (CCM1) was modified so that the cloud radiative properties (albodo, emissivity, and absorptivity) are no longer prescribed, but are functions of the cloud liquid water content. Following the Cess and Potter approach for estimating climate sensitivity, we consider results from two sets of simulations. In one set, cloud liquid water is diagnosed from the simulated condensation rate and thus is free to vary with condensation, while in the other set, the cloud liquid water content is a fixed field (dependent only on altitude and latitude) that is obtained by averaging the results of the first set of experiments. The experiments make it possible to isolate the effects of cloud liquid water feedback. We find that...