On the accuracy of spectral solvers for micromechanics based fatigue modeling

A framework based on FFT is proposed for micromechanical fatigue modeling of polycrystals as alternative to the Finite Element method (FEM). The variational FFT approach (de Geus et al. in Comput Methods Appl Mech Eng 318:412–430, 2017; Zeman et al. in Int J Numer Methods Eng 110:903–926, 2017) is used with a crystal plasticity model for the cyclic behavior of the grains that is introduced through a FEM material subroutine, in particular an Abaqus umat. The framework also includes an alternative projection operator based on discrete differentiation to improve the microfield fidelity allowing to include second phases. The accuracy and efficiency of the FFT framework for microstructure sensitive fatigue prediction are assessed by comparing with FEM. The macroscopic cyclic response of a polycrystal obtained with both methods were indistinguishable, irrespective of the number of cycles. The microscopic fields presented small differences that decrease when using the discrete projection operator, which indeed allowed simulating accurately microstructures containing very stiff particles. Finally, the maximum differences in the fatigue life estimation from the microfields respect FEM were around 15%. In summary, this framework allows predicting fatigue life with a similar accuracy than using FEM but strongly reducing the computational cost.

[1]  E. F. Kaasschieter,et al.  Preconditioned conjugate gradients for solving singular systems , 1988 .

[2]  Michael D. Sangid,et al.  The physics of fatigue crack initiation , 2013 .

[3]  Ignacio Romero,et al.  MUESLI - a Material UnivErSal LIbrary , 2017, Adv. Eng. Softw..

[4]  G. Cailletaud A micromechanical approach to inelastic behaviour of metals , 1992 .

[5]  F. Willot,et al.  Fourier-based schemes for computing the mechanical response of composites with accurate local fields , 2014, 1412.8398.

[6]  M. Geers,et al.  Finite strain FFT-based non-linear solvers made simple , 2016, 1603.08893.

[7]  A. Cruzado,et al.  Multiscale modeling of the mechanical behavior of IN718 superalloy based on micropillar compression and computational homogenization , 2015 .

[8]  F. Willot,et al.  Fourier‐based schemes with modified Green operator for computing the electrical response of heterogeneous media with accurate local fields , 2013, 1307.1015.

[9]  Sean B. Leen,et al.  Micromechanical methodology for fatigue in cardiovascular stents , 2012 .

[10]  Sean B. Leen,et al.  Experimental characterisation for micromechanical modelling of CoCr stent fatigue. , 2014, Biomaterials.

[11]  R. Quey,et al.  Large-scale 3D random polycrystals for the finite element method: Generation, meshing and remeshing , 2011 .

[12]  A. Cruzado,et al.  Microstructure-based fatigue life model of metallic alloys with bilinear Coffin-Manson behavior , 2017, 1707.06605.

[13]  R. Asaro,et al.  Overview no. 42 Texture development and strain hardening in rate dependent polycrystals , 1985 .

[14]  Matti Schneider,et al.  Use of composite voxels in FFT-based homogenization , 2015 .

[15]  D. McDowell,et al.  Microstructure-sensitive computational modeling of fatigue crack formation , 2010 .

[16]  Javier Segurado,et al.  Simulation of the deformation of polycrystalline nanostructured Ti by computational homogenization , 2013 .

[17]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[18]  David L. McDowell,et al.  Mesoscale modeling of microstructurally small fatigue cracks in metallic polycrystals , 2014 .

[19]  David L. McDowell,et al.  Microstructure and mesh sensitivities of mesoscale surrogate driving force measures for transgranular fatigue cracks in polycrystals , 2015 .

[20]  O. Sigmund,et al.  Higher‐order multi‐resolution topology optimization using the finite cell method , 2017 .

[21]  Caoimhe A. Sweeney,et al.  The role of elastic anisotropy, length scale and crystallographic slip in fatigue crack nucleation , 2013 .

[22]  J. Michel,et al.  Effective properties of composite materials with periodic microstructure : a computational approach , 1999 .

[23]  David L. McDowell,et al.  Estimating fatigue sensitivity to polycrystalline Ni‐base superalloy microstructures using a computational approach , 2007 .

[24]  Hervé Moulinec,et al.  A numerical method for computing the overall response of nonlinear composites with complex microstructure , 1998, ArXiv.

[25]  M. Geers,et al.  A finite element perspective on nonlinear FFT‐based micromechanical simulations , 2016, 1601.05970.

[26]  Fionn P.E. Dunne,et al.  A stored energy criterion for fatigue crack nucleation in polycrystals , 2014 .

[27]  M. Diehl,et al.  A spectral method solution to crystal elasto-viscoplasticity at finite strains , 2013 .

[28]  Yi Liu,et al.  On the accuracy of the self-consistent approximation for polycrystals: comparison with full-field numerical simulations , 2004 .

[29]  David L. McDowell,et al.  Failure of metals II: Fatigue , 2016 .

[30]  R. Lebensohn,et al.  Effect of single-crystal plastic deformation mechanisms on the dilatational plastic response of porous polycrystals , 2012 .

[31]  E. Cerreta,et al.  Modeling void growth in polycrystalline materials , 2013 .

[32]  T. B. Britton,et al.  Slip localization and fatigue crack nucleation near a non-metallic inclusion in polycrystalline nickel-based superalloy , 2015 .

[33]  R. Lebensohn N-site modeling of a 3D viscoplastic polycrystal using Fast Fourier Transform , 2001 .

[34]  Vincent Monchiet,et al.  Numerical homogenization of nonlinear composites with a polarization-based FFT iterative scheme , 2013 .

[35]  Ricardo A. Lebensohn,et al.  Influence of microstructure variability on short crack behavior through postulated micromechanical short crack driving force metrics , 2015 .

[36]  A. Cruzado,et al.  Modeling cyclic deformation of inconel 718 superalloy by means of crystal plasticity and computational homogenization , 2017 .

[37]  J. Segurado,et al.  An inverse optimization strategy to determine single crystal mechanical behavior from polycrystal tests: Application to AZ31 Mg alloy , 2014 .

[38]  J. Segurado,et al.  Computational Homogenization of Polycrystals , 2018, 1804.02538.

[39]  F. Dunne,et al.  High– and low–cycle fatigue crack initiation using polycrystal plasticity , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.