HJB Equations in Infinite Dimension and Optimal Control of Stochastic Evolution Equations Via Generalized Fukushima Decomposition

A stochastic optimal control problem driven by an abstract evolution equation in a separable Hilbert space is considered. Thanks to the identification of the mild solution of the state equation as a $\nu$-weak Dirichlet process, the value process is proved to be a real weak Dirichlet process. The uniqueness of the corresponding decomposition is used to prove a verification theorem. Through that technique several of the required assumptions are milder than those employed in previous contributions about nonregular solutions of Hamilton--Jacobi--Bellman equations.

[1]  Sonja G. Cox,et al.  Stochastic integration in quasi-Banach spaces , 2006, Studia Mathematica.

[2]  Giuseppe Da Prato,et al.  Hamilton-Jacobi equations in Hilbert spaces , 1983 .

[3]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[4]  Francesco Russo,et al.  Infinite dimensional stochastic calculus via regularization , 2010 .

[5]  Fausto Gozzi,et al.  Second order parabolic Hamilton-Jacobi-Bellman equations in Hilbert spaces and stochastic control: approach , 2006 .

[6]  Andrzej Świe,et al.  \unbounded" Second Order Partial Differential Equations in Infinite Dimensional Hilbert Spaces , 2007 .

[7]  Francesco Russo,et al.  Generalized covariation for Banach space valued processes, Itô formula and applications , 2010, 1012.2484.

[8]  Raouf Boucekkine,et al.  Growth and agglomeration in the heterogeneous space: a generalized AK approach , 2018, Journal of Economic Geography.

[9]  N. Dinculeanu Vector Integration and Stochastic Integration in Banach Spaces , 2000, Oxford Handbooks Online.

[10]  Marco Fuhrman,et al.  Università di Milano – Bicocca Quaderni di Matematica Stochastic equations with delay : optimal control via BSDEs and regular solutions of Hamilton-Jacobi-Bellman equations , 2008 .

[11]  Marco Fuhrman,et al.  Optimal control of a stochastic heat equation with boundary-noise and boundary-control , 2007 .

[12]  Enrico Priola,et al.  On a class of Markov type semigroups in spaces of uniformly continuous and bounded functions , 1999 .

[13]  Elisabeth Rouy,et al.  Regular Solutions of Second-Order Stationary Hamilton-Jacobi Equations , 1996 .

[14]  Sandra Cerrai,et al.  Optimal Control Problems for Stochastic Reaction-Diffusion Systems with Non-Lipschitz Coefficients , 2000, SIAM J. Control. Optim..

[15]  B. Rozovskii,et al.  Stochastic evolution equations , 1981 .

[16]  Michel Metivier,et al.  STOCHASTIC INTEGRAL EQUATIONS , 1980 .

[17]  P. Lions Optimal control of diffusion processes and hamilton–jacobi–bellman equations part 2 : viscosity solutions and uniqueness , 1983 .

[18]  N. U. Ahmed,et al.  Generalized solutions of HJB equations applied to stochastic control on Hilbert space , 2003 .

[19]  Alberto Ohashi,et al.  Weak Functional It\^o Calculus and Applications , 2014, 1408.1423.

[20]  Fausto Gozzi,et al.  Regularity of solutions of a second order hamilton-jacobi equation and application to a control problem , 1995 .

[21]  Marco Fuhrman,et al.  Stochastic control and BSDEs with quadratic growth , 2007 .

[22]  JB Clément,et al.  Weak Dirichlet processes with a stochastic control perspective , 2006, math/0604326.

[23]  Giuseppe Da Prato,et al.  Second Order Partial Differential Equations in Hilbert Spaces: Bibliography , 2002 .

[24]  G. Tessitore,et al.  Nonlinear Kolmogorov equations in infinite dimensional spaces: the backward stochastic differential equations approach and applications to optimal control , 2002 .

[25]  Francesco Russo,et al.  Verification theorems for stochastic optimal control problems via a time dependent Fukushima-Dirichlet decomposition , 2006, math/0604327.

[26]  Giambattista Giacomin Second Order Hamilton-Jacobi Equations in Hilbert Spaces and Stochastic Optimal Control , 2002 .

[27]  Fausto Gozzi,et al.  Global Regular Solutions of Second Order Hamilton–Jacobi Equations in Hilbert Spaces with Locally Lipschitz Nonlinearities , 1996 .

[28]  J. Zabczyk,et al.  Stochastic Equations in Infinite Dimensions , 2008 .

[29]  T. Kurtz,et al.  Stochastic equations in infinite dimensions , 2006 .

[30]  Leszek Gawarecki,et al.  Stochastic Differential Equations in Infinite Dimensions , 2011 .

[31]  Fausto Gozzi,et al.  Stochastic optimal control in infinite dimension : dynamic programming and HJB equations , 2017 .

[32]  P. L. Linos Optimal control of diffustion processes and hamilton-jacobi-bellman equations part I: the dynamic programming principle and application , 1983 .

[33]  Elisabeth Rouy,et al.  Second Order Hamilton--Jacobi Equations in Hilbert Spaces and Stochastic Boundary Control , 2000, SIAM J. Control. Optim..

[34]  Giorgio Fabbri,et al.  Geographical structure and convergence: A note on geometry in spatial growth models , 2016, J. Econ. Theory.

[35]  Francesco Russo,et al.  n-covariation, generalized Dirichlet processes and calculus with respect to finite cubic variation processes , 2003 .

[36]  Francesco Russo,et al.  Infinite dimensional weak Dirichlet processes and convolution type processes , 2016, 1606.03828.

[37]  T. M. Flett Differential Analysis: Differentiation, Differential Equations and Differential Inequalities , 1980 .

[38]  Sandra Cerrai,et al.  Stationary Hamilton--Jacobi Equations in Hilbert Spaces and Applications to a Stochastic Optimal Control Problem , 2001, SIAM J. Control. Optim..

[39]  R. Ryan Introduction to Tensor Products of Banach Spaces , 2002 .

[40]  Niels Jacob,et al.  GIUSEPPE DA PRATO and JERZY ZABCZYK: 379 pp., £29.95 (LMS members' price £22.46), ISBN 0-521-77729-1 (Cambridge University Press, 2002) , 2004 .

[41]  Marco Fuhrman,et al.  Infinite horizon backward stochastic differential equations and elliptic equations in Hilbert spaces , 2004 .

[42]  Francesco Russo,et al.  Functional Itô versus Banach space stochastic calculus and strict solutions of semilinear path-dependent equations , 2015, 1505.02926.

[43]  Francesco Russo,et al.  Generalized covariation and extended Fukushima decompositions for Banach valued processes. Application to windows of Dirichlet processes. , 2011, 1105.4419.