Linear energy stable and maximum principle preserving semi-implicit scheme for Allen-Cahn equation with double well potential

[1]  Jie Shen,et al.  Convergence and Error Analysis for the Scalar Auxiliary Variable (SAV) Schemes to Gradient Flows , 2018, SIAM J. Numer. Anal..

[2]  Shuyu Sun,et al.  Linearly Decoupled Energy-Stable Numerical Methods for Multicomponent Two-Phase Compressible Flow , 2018, SIAM J. Numer. Anal..

[3]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[4]  Xiaofeng Yang,et al.  Numerical Approximations for Allen-Cahn Type Phase Field Model of Two-Phase Incompressible Fluids with Moving Contact Lines , 2017 .

[5]  Markus Kästner,et al.  Isogeometric analysis of the Cahn-Hilliard equation - a convergence study , 2016, J. Comput. Phys..

[6]  Xiuhua Wang,et al.  A Novel Energy Factorization Approach for the Diffuse-Interface Model with Peng-Robinson Equation of State , 2020, SIAM J. Sci. Comput..

[7]  Cheng Wang,et al.  Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation , 2009, J. Comput. Phys..

[8]  Jisheng Kou,et al.  Numerical Approximation of a Phase-Field Surfactant Model with Fluid Flow , 2018, J. Sci. Comput..

[9]  Shuyu Sun,et al.  Entropy stable modeling of non-isothermal multi-component diffuse-interface two-phase flows with realistic equations of state , 2018, Computer Methods in Applied Mechanics and Engineering.

[10]  Shuyu Sun,et al.  Efficient energy-stable schemes for the hydrodynamics coupled phase-field model , 2019, Applied Mathematical Modelling.

[11]  Krishna Garikipati,et al.  A discontinuous Galerkin method for the Cahn-Hilliard equation , 2006, J. Comput. Phys..

[12]  J. Cahn,et al.  A microscopic theory for antiphase boundary motion and its application to antiphase domain coasening , 1979 .

[13]  Khaled Omrani,et al.  Finite difference approximate solutions for the Cahn‐Hilliard equation , 2007 .

[14]  J. Cahn,et al.  A Microscopic Theory for Domain Wall Motion and Its Experimental Verification in Fe‐Al Alloy Domain Growth Kinetics , 1977 .

[15]  Charles M. Elliott,et al.  The global dynamics of discrete semilinear parabolic equations , 1993 .

[16]  Jiang Yang,et al.  The scalar auxiliary variable (SAV) approach for gradient flows , 2018, J. Comput. Phys..

[17]  T. Tang,et al.  Nonlinear stability of the implicit-explicit methods for the Allen-Cahn equation , 2013 .

[18]  D. Peng,et al.  A New Two-Constant Equation of State , 1976 .

[19]  Xiaofeng Yang,et al.  Decoupled energy stable schemes for phase-field vesicle membrane model , 2015, J. Comput. Phys..

[20]  S. M. Wise,et al.  Unconditionally Stable Finite Difference, Nonlinear Multigrid Simulation of the Cahn-Hilliard-Hele-Shaw System of Equations , 2010, J. Sci. Comput..

[21]  Franck Boyer,et al.  Numerical schemes for a three component Cahn-Hilliard model , 2011 .

[22]  Jiang Yang,et al.  Implicit-Explicit Scheme for the Allen-Cahn Equation Preserves the Maximum Principle , 2016 .

[23]  Charles M. Elliott,et al.  Numerical analysis of the Cahn-Hilliard equation with a logarithmic free energy , 1992 .

[24]  Shuyu Sun,et al.  Decoupled, energy stable schemes for a phase-field surfactant model , 2018, Comput. Phys. Commun..

[25]  Shuyu Sun,et al.  A Componentwise Convex Splitting Scheme for Diffuse Interface Models with Van der Waals and Peng-Robinson Equations of State , 2017, SIAM J. Sci. Comput..

[26]  Lili Ju,et al.  Unconditionally Energy Stable Linear Schemes for the Diffuse Interface Model with Peng–Robinson Equation of State , 2018, J. Sci. Comput..

[27]  D. J. Eyre Unconditionally Gradient Stable Time Marching the Cahn-Hilliard Equation , 1998 .

[28]  Cheng Wang,et al.  Positivity-preserving, energy stable numerical schemes for the Cahn-Hilliard equation with logarithmic potential , 2017, J. Comput. Phys. X.

[29]  Thomas J. R. Hughes,et al.  Provably unconditionally stable, second-order time-accurate, mixed variational methods for phase-field models , 2011, J. Comput. Phys..

[30]  Andreas Prohl,et al.  Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows , 2003, Numerische Mathematik.

[31]  Xiaofeng Yang,et al.  Numerical approximations of Allen-Cahn and Cahn-Hilliard equations , 2010 .

[32]  Francisco Guillén-González,et al.  On linear schemes for a Cahn-Hilliard diffuse interface model , 2013, J. Comput. Phys..

[33]  Tao Tang,et al.  Stability Analysis of Large Time-Stepping Methods for Epitaxial Growth Models , 2006, SIAM J. Numer. Anal..

[34]  Jianchao Cai,et al.  Energy stable and mass conservative numerical method for a generalized hydrodynamic phase-field model with different densities , 2020 .

[35]  Jie Shen,et al.  Efficient energy stable numerical schemes for a phase field moving contact line model , 2015, J. Comput. Phys..

[36]  T. Hughes,et al.  Isogeometric analysis of the Cahn–Hilliard phase-field model , 2008 .

[37]  Jie Shen,et al.  Decoupled Energy Stable Schemes for a Phase-Field Model of Two-Phase Incompressible Flows with Variable Density , 2014, Journal of Scientific Computing.

[38]  Xiaofeng Yang,et al.  Error analysis of stabilized semi-implicit method of Allen-Cahnequation , 2009 .

[39]  Steven M. Wise,et al.  Convergence Analysis of a Second Order Convex Splitting Scheme for the Modified Phase Field Crystal Equation , 2012, SIAM J. Numer. Anal..

[40]  M. Wheeler,et al.  Mixed Finite Elements for Elliptic Problems with Tensor Coefficients as Cell-Centered Finite Differences , 1997 .

[41]  Qiujin Peng,et al.  A Convex-Splitting Scheme for a Diffuse Interface Model with Peng-Robinson Equation of State , 2017 .

[42]  P. Souganidis,et al.  Phase Transitions and Generalized Motion by Mean Curvature , 1992 .

[43]  Xiaofeng Yang,et al.  On Linear and Unconditionally Energy Stable Algorithms for Variable Mobility Cahn-Hilliard Type Equation with Logarithmic Flory-Huggins Potential , 2017, Communications in Computational Physics.

[44]  P. Jimack,et al.  High Accuracy Benchmark Problems for Allen-Cahn and Cahn-Hilliard Dynamics , 2019, Communications in Computational Physics.

[45]  Yibao Li,et al.  Computationally efficient adaptive time step method for the Cahn-Hilliard equation , 2017, Comput. Math. Appl..

[46]  Xiuhua Wang,et al.  Stabilized Energy Factorization Approach for Allen–Cahn Equation with Logarithmic Flory–Huggins Potential , 2020, J. Sci. Comput..

[47]  Junseok Kim Phase-Field Models for Multi-Component Fluid Flows , 2012 .

[48]  Jia Zhao,et al.  Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method , 2017, J. Comput. Phys..

[49]  Shuyu Sun,et al.  Thermodynamically consistent modeling and simulation of multi-component two-phase flow model with partial miscibility , 2016, 1611.08622.

[50]  Qiang Du,et al.  Maximum Principle Preserving Exponential Time Differencing Schemes for the Nonlocal Allen-Cahn Equation , 2019, SIAM J. Numer. Anal..

[51]  Lili Ju,et al.  Efficient linear schemes with unconditional energy stability for the phase field elastic bending energy model , 2017 .

[52]  Daisuke Furihata,et al.  A stable and conservative finite difference scheme for the Cahn-Hilliard equation , 2001, Numerische Mathematik.

[53]  JISHENG KOU,et al.  Numerical Methods for a Multicomponent Two-Phase Interface Model with Geometric Mean Influence Parameters , 2015, SIAM J. Sci. Comput..

[54]  Olga Wodo,et al.  Computationally efficient solution to the Cahn-Hilliard equation: Adaptive implicit time schemes, mesh sensitivity analysis and the 3D isoperimetric problem , 2011, J. Comput. Phys..

[55]  Shuyu Sun,et al.  A stable algorithm for calculating phase equilibria with capillarity at specified moles, volume and temperature using a dynamic model , 2018 .

[56]  Jie Shen,et al.  A decoupled energy stable scheme for a hydrodynamic phase-field model of mixtures of nematic liquid crystals and viscous fluids , 2016, J. Comput. Phys..

[57]  Xiaoming Wang,et al.  A second order in time, uniquely solvable, unconditionally stable numerical scheme for Cahn-Hilliard-Navier-Stokes equation , 2014, J. Comput. Phys..

[58]  Xiaofeng Yang,et al.  Numerical approximations for a phase field dendritic crystal growth model based on the invariant energy quadratization approach , 2017 .

[59]  Jie Shen,et al.  Second-order Convex Splitting Schemes for Gradient Flows with Ehrlich-Schwoebel Type Energy: Application to Thin Film Epitaxy , 2012, SIAM J. Numer. Anal..

[60]  Ming Wang,et al.  A nonconforming finite element method for the Cahn-Hilliard equation , 2010, J. Comput. Phys..

[61]  Endre Süli,et al.  Discontinuous Galerkin Finite Element Approximation of the Cahn-Hilliard Equation with Convection , 2009, SIAM J. Numer. Anal..

[62]  Suchuan Dong,et al.  A Roadmap for Discretely Energy-Stable Schemes for Dissipative Systems Based on a Generalized Auxiliary Variable with Guaranteed Positivity , 2019, J. Comput. Phys..

[63]  Cheng Wang,et al.  An Energy-Stable and Convergent Finite-Difference Scheme for the Phase Field Crystal Equation , 2009, SIAM J. Numer. Anal..

[64]  Ying Chen,et al.  Efficient, adaptive energy stable schemes for the incompressible Cahn-Hilliard Navier-Stokes phase-field models , 2016, J. Comput. Phys..

[65]  Jie Shen,et al.  Decoupled, Energy Stable Schemes for Phase-Field Models of Two-Phase Incompressible Flows , 2015, SIAM J. Numer. Anal..

[66]  Wenqiang Feng,et al.  An energy stable fourth order finite difference scheme for the Cahn-Hilliard equation , 2017, J. Comput. Appl. Math..

[67]  Shuyu Sun,et al.  Thermodynamically consistent simulation of nonisothermal diffuse-interface two-phase flow with Peng-Robinson equation of state , 2017, J. Comput. Phys..

[68]  Xiao,et al.  A SECOND-ORDER CONVEX SPLITTING SCHEME FOR A CAHN-HILLIARD EQUATION WITH VARIABLE INTERFACIAL PARAMETERS , 2017 .