Visual Map Construction Using RGB-D Sensors for Image-Based Localization in Indoor Environments

RGB-D sensors capture RGB images and depth images simultaneously, which makes it possible to acquire the depth information at pixel level. This paper focuses on the use of RGB-D sensors to construct a visual map which is an extended dense 3D map containing essential elements for image-based localization, such as poses of the database camera, visual features, and 3D structures of the building. Taking advantage of matched visual features and corresponding depth values, a novel local optimization algorithm is proposed to achieve point cloud registration and database camera pose estimation. Next, graph-based optimization is used to obtain the global consistency of the map. On the basis of the visual map, the image-based localization method is investigated, making use of the epipolar constraint. The performance of the visual map construction and the image-based localization are evaluated on typical indoor scenes. The simulation results show that the average position errors of the database camera and the query camera can be limited to within 0.2 meters and 0.9 meters, respectively.

[1]  Shueng-Han Gary Chan,et al.  Wi-Fi Fingerprint-Based Indoor Positioning: Recent Advances and Comparisons , 2016, IEEE Communications Surveys & Tutorials.

[2]  Zhengyou Zhang,et al.  Microsoft Kinect Sensor and Its Effect , 2012, IEEE Multim..

[3]  Fabio Bellavia,et al.  Robust Selective Stereo SLAM without Loop Closure and Bundle Adjustment , 2013, ICIAP.

[4]  Gary R. Bradski,et al.  ORB: An efficient alternative to SIFT or SURF , 2011, 2011 International Conference on Computer Vision.

[5]  Daniel Cremers,et al.  LSD-SLAM: Large-Scale Direct Monocular SLAM , 2014, ECCV.

[6]  David Nistér,et al.  An efficient solution to the five-point relative pose problem , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Hong Zhang,et al.  BoRF: Loop-closure detection with scale invariant visual features , 2011, 2011 IEEE International Conference on Robotics and Automation.

[8]  Honggui Li,et al.  Low-Cost 3D Bluetooth Indoor Positioning with Least Square , 2014, Wirel. Pers. Commun..

[9]  Andreas Zell,et al.  On-Board Dual-Stereo-Vision for the Navigation of an Autonomous MAV , 2013, Journal of Intelligent & Robotic Systems.

[10]  Grzegorz Cielniak,et al.  Indoor positioning of shoppers using a network of Bluetooth Low Energy beacons , 2016, 2016 International Conference on Indoor Positioning and Indoor Navigation (IPIN).

[11]  Michael Bosse,et al.  Keyframe-based visual–inertial odometry using nonlinear optimization , 2015, Int. J. Robotics Res..

[12]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Daniel Herrera C,et al.  Joint depth and color camera calibration with distortion correction. , 2012, IEEE transactions on pattern analysis and machine intelligence.

[14]  Dieter Fox,et al.  RGB-D Mapping: Using Depth Cameras for Dense 3D Modeling of Indoor Environments , 2010, ISER.

[15]  Shahrokh Valaee,et al.  Semi-supervised logo-based indoor localization using smartphone cameras , 2014, 2014 IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC).

[16]  Hong Zhang,et al.  Visual loop closure detection by matching binary visual features using locality sensitive hashing , 2014, Proceeding of the 11th World Congress on Intelligent Control and Automation.

[17]  G. Klein,et al.  Parallel Tracking and Mapping for Small AR Workspaces , 2007, 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality.

[18]  Robert Piché,et al.  A Survey of Selected Indoor Positioning Methods for Smartphones , 2017, IEEE Communications Surveys & Tutorials.

[19]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[20]  Hugh F. Durrant-Whyte,et al.  Simultaneous localization and mapping: part I , 2006, IEEE Robotics & Automation Magazine.

[21]  Torsten Sattler,et al.  3D Modeling on the Go: Interactive 3D Reconstruction of Large-Scale Scenes on Mobile Devices , 2015, 2015 International Conference on 3D Vision.

[22]  Andrew J. Davison,et al.  DTAM: Dense tracking and mapping in real-time , 2011, 2011 International Conference on Computer Vision.

[23]  Shahrokh Valaee,et al.  Ocrapose: An indoor positioning system using smartphone/tablet cameras and OCR-aided stereo feature matching , 2015, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[24]  Eckehard G. Steinbach,et al.  Indoor Location Retrieval using Shape Matching of KinectFusion Scans to Large-Scale Indoor Point Clouds , 2015, 3DOR@Eurographics.

[25]  Avideh Zakhor,et al.  Image Based Localization in Indoor Environments , 2013, 2013 Fourth International Conference on Computing for Geospatial Research and Application.

[26]  Tao Mei,et al.  Vision-Based Fine-Grained Location Estimation , 2015, Multimodal Location Estimation of Videos and Images.

[27]  Anas Al-Nuaimi,et al.  Mobile Visual Location Recognition , 2013 .

[28]  Florian Schweiger,et al.  TUMindoor: An extensive image and point cloud dataset for visual indoor localization and mapping , 2012, 2012 19th IEEE International Conference on Image Processing.

[29]  Ian D. Reid,et al.  An image-to-map loop closing method for monocular SLAM , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[30]  Shahrokh Valaee,et al.  A weighted KNN epipolar geometry-based approach for vision-based indoor localization using smartphone cameras , 2014, 2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM).

[31]  Robert Harle,et al.  Location Fingerprinting With Bluetooth Low Energy Beacons , 2015, IEEE Journal on Selected Areas in Communications.

[32]  A. Zykina A Lexicographic Optimization Algorithm , 2004 .

[33]  Carlos Silvestre,et al.  Sensor-based simultaneous localization and mapping — Part II: Online inertial map and trajectory estimation , 2012, 2012 American Control Conference (ACC).

[34]  Frédéric Jurie,et al.  Sampling Strategies for Bag-of-Features Image Classification , 2006, ECCV.

[35]  Hiroyuki Kamata,et al.  Study on the Indoor SLAM Using Kinect , 2012 .

[36]  Javier Civera,et al.  Stereo parallel tracking and mapping for robot localization , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[37]  Lionel M. Ni,et al.  A Survey on Wireless Indoor Localization from the Device Perspective , 2016, ACM Comput. Surv..

[38]  Gerald Friedland,et al.  Multimodal Location Estimation of Videos and Images , 2014 .

[39]  Ian D. Reid,et al.  Article in Press Robotics and Autonomous Systems ( ) – Robotics and Autonomous Systems a Comparison of Loop Closing Techniques in Monocular Slam , 2022 .

[40]  Andrew Zisserman,et al.  MLESAC: A New Robust Estimator with Application to Estimating Image Geometry , 2000, Comput. Vis. Image Underst..

[41]  Sander Oude Elberink,et al.  Accuracy and Resolution of Kinect Depth Data for Indoor Mapping Applications , 2012, Sensors.

[42]  Romuald Aufrère,et al.  Real-Time Monocular SLAM With Low Memory Requirements , 2015, IEEE Transactions on Intelligent Transportation Systems.

[43]  Thomas F. Coleman,et al.  An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds , 1993, SIAM J. Optim..

[44]  Avideh Zakhor,et al.  Single view pose estimation of mobile devices in urban environments , 2013, 2013 IEEE Workshop on Applications of Computer Vision (WACV).

[45]  Katinka Wolter,et al.  A survey of experimental evaluation in indoor localization research , 2015, 2015 International Conference on Indoor Positioning and Indoor Navigation (IPIN).

[46]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[47]  J. M. M. Montiel,et al.  ORB-SLAM: A Versatile and Accurate Monocular SLAM System , 2015, IEEE Transactions on Robotics.

[48]  Eckehard G. Steinbach,et al.  Virtual reference view generation for CBIR-based visual pose estimation , 2012, ACM Multimedia.

[49]  Michael Suppa,et al.  Stereo-vision based obstacle mapping for indoor/outdoor SLAM , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[50]  Dieter Schmalstieg,et al.  Global Localization from Monocular SLAM on a Mobile Phone , 2014, IEEE Transactions on Visualization and Computer Graphics.

[51]  José Ruíz Ascencio,et al.  Visual simultaneous localization and mapping: a survey , 2012, Artificial Intelligence Review.

[52]  NITIN KUMAR DHIMAN,et al.  Where am I? Creating spatial awareness in unmanned ground robots using SLAM: A survey , 2015, Sadhana.

[53]  Huai-Rong Shao,et al.  WiFi-based indoor positioning , 2015, IEEE Communications Magazine.