Mating Siegel quadratic polynomials

1.1. Mating: Definitions and some history. Mating quadratic polynomials is a topological construction suggested by Douady and Hubbard [Do2] to partially parametrize quadratic rational maps of the Riemann sphere by pairs of quadratic polynomials. Some results on matings of higher degree maps exist, but we will not discuss them in this paper. While there exist several, presumably equivalent, ways of describing the construction of mating, the following approach is perhaps the most standard. Consider two monic quadratic polynomials fi and f2 whose filled Julia sets K(fi) are locally-connected. For each fi, let (Di denote the conformal isomorphism between the basin of infinity C -,. K(f,) and C -. ED, with i(00) = 00 and V(oo) = 1. These Bottcher maps conijugate the polynomials to the squaring map:

[1]  Michael Yampolsky Complex bounds for renormalization of critical circle maps , 1999 .

[2]  J. Yoccoz,et al.  Petits diviseurs en dimension 1 , 2018, Astérisque.

[3]  J. Guckenheimer ONE‐DIMENSIONAL DYNAMICS * , 1980 .

[4]  Mark Levi,et al.  Geometrical aspects of stability theory for Hill's equations , 1995 .

[5]  Dynamics of Cubic Siegel Polynomials , 1998, math/9805098.

[6]  Shaun Bullett,et al.  Ordered orbits of the shift, square roots, and the devil's staircase , 1994, Mathematical Proceedings of the Cambridge Philosophical Society.

[7]  W. D. Melo,et al.  ONE-DIMENSIONAL DYNAMICS , 2013 .

[8]  M. Rees A partial description of parameter space of rational maps of degree two: Part I , 1992 .

[9]  A. Douady,et al.  Systèmes dynamiques holomorphes , 1983 .

[10]  M. Lyubich,et al.  The dynamics of rational transforms: the topological picture , 1986 .

[11]  A. Douady ALGORITHMS FOR COMPUTING ANGLES IN THE MANDELBROT SET , 1986 .

[12]  Carsten Lunde Petersen Local connectivity of some Julia sets containing a circle with an irrational rotation , 1996 .

[14]  G. Swiatek Rational rotation numbers for maps of the circle , 1988 .

[15]  Curtis T. McMullen,et al.  Complex Dynamics and Renormalization , 1994 .

[16]  L. Ahlfors,et al.  RIEMANN'S MAPPING THEOREM FOR VARIABLE METRICS* , 1960 .

[17]  C. Siegel,et al.  Iteration of Analytic Functions , 1942 .

[18]  A. Douady,et al.  Conformally natural extension of homeomorphisms of the circle , 1986 .

[19]  John W. Milnor,et al.  Geometry and Dynamics of Quadratic Rational Maps , 1993, Exp. Math..

[20]  Pau Atela Bifurcations of dynamic rays in complex polynomials of degree two , 1992, Ergodic Theory and Dynamical Systems.

[21]  John H. Hubbard,et al.  A proof of Thurston's topological characterization of rational functions , 1993 .

[22]  Tan Lei Matings of quadratic polynomials , 1992, Ergodic Theory and Dynamical Systems.

[23]  A. Douady,et al.  Disques de Siegel et anneaux de Herman , 1987 .

[24]  ON DYNAMICS OF CUBIC SIEGEL POLYNOMIALS , 1998 .

[25]  Edson de Faria,et al.  RIGIDITY OF CRITICAL CIRCLE MAPPINGS I , 1997, math/9711214.

[26]  Tan Lei,et al.  A Family of Cubic Rational Maps and Matings of Cubic Polynomials , 2000, Exp. Math..

[27]  J. Milnor,et al.  Dynamics in One Complex Variable: Introductory Lectures , 2000 .

[28]  J. Milnor Periodic Orbits, Externals Rays and the Mandelbrot Set: An Expository Account , 1999, Astérisque.

[29]  Lei Tan,et al.  Local connectivity of the Julia set for geometrically finite rational maps , 1996 .