Weyl points and line nodes in gyroid photonic crystals

Materials exhibiting three-dimensional (3D) linear dispersion relations between frequency and wavevector are expected to display a wide range of interesting phenomena. 3D linear point degeneracies between two bands (“Weyl points”) have yet to be observed. Based on analytical and numerical analysis, researchers predict Weyl point formation in 3D photonic crystals.

[1]  Leon Balents,et al.  Weyl semimetal in a topological insulator multilayer. , 2011, Physical review letters.

[2]  Yize Jin,et al.  Topological insulators , 2014, Topology in Condensed Matter.

[3]  G. Langlet,et al.  International Tables for Crystallography , 2002 .

[4]  Hans Wondratschek,et al.  Bilbao Crystallographic Server. II. Representations of crystallographic point groups and space groups. , 2006, Acta crystallographica. Section A, Foundations of crystallography.

[5]  Chan,et al.  Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods. , 1994, Physical review. B, Condensed matter.

[6]  J. S. Beck,et al.  Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism , 1992, Nature.

[7]  Xi Dai,et al.  Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4. , 2011, Physical review letters.

[8]  G. Volovik,et al.  The Universe in a Helium Droplet , 2003 .

[9]  L. Balents,et al.  Topological nodal semimetals , 2011, 1110.1089.

[10]  C. Tanford Macromolecules , 1994, Nature.

[11]  M. Segev,et al.  Conical diffraction and gap solitons in honeycomb photonic lattices , 2006, 2007 Quantum Electronics and Laser Science Conference.

[12]  A. Ferrari,et al.  Graphene Photonics and Optoelectroncs , 2010, CLEO 2012.

[13]  Kai-Yu Yang,et al.  Quantum Hall effects in a Weyl semimetal: Possible application in pyrochlore iridates , 2011, 1105.2353.

[14]  Ashvin Vishwanath,et al.  Subject Areas : Strongly Correlated Materials A Viewpoint on : Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates , 2011 .

[15]  Steven G. Johnson,et al.  Three-dimensional photonic crystals by large-area membrane stacking. , 2012, Optics letters.

[16]  L. Balents,et al.  Time-reversal invariant realization of the Weyl semimetal phase , 2011, 1109.6137.

[17]  M. Okano,et al.  Direct creation of three-dimensional photonic crystals by a top-down approach. , 2009, Nature materials.

[18]  J. Herskowitz,et al.  Proceedings of the National Academy of Sciences, USA , 1996, Current Biology.

[19]  M. Segev,et al.  Photonic Floquet topological insulators , 2012, Nature.

[20]  O. Bagasra,et al.  Proceedings of the National Academy of Sciences , 1914, Science.

[21]  Adler-Bell-Jackiw anomaly in Weyl semimetals: Application to pyrochlore iridates , 2011, 1108.4426.

[22]  J. Joannopoulos,et al.  Electromagnetic Bloch waves at the surface of a photonic crystal. , 1991, Physical review. B, Condensed matter.

[23]  大橋 裕二,et al.  Acta Crystallographica に Section E を新設 , 2000 .

[24]  Zheng Wang,et al.  Observation of unidirectional backscattering-immune topological electromagnetic states , 2009, Nature.

[25]  E. Thomas,et al.  Triply Periodic Bicontinuous Cubic Microdomain Morphologies by Symmetries , 2001 .

[26]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[27]  J. Lewis,et al.  A Germanium Inverse Woodpile Structure with a Large Photonic Band Gap , 2007 .

[28]  S. Maier,et al.  Three‐Dimensionally Isotropic Negative Refractive Index Materials from Block Copolymer Self‐Assembled Chiral Gyroid Networks , 2011 .

[29]  C Pouya,et al.  Electromagnetic characterization of millimetre-scale replicas of the gyroid photonic crystal found in the butterfly Parides sesostris , 2012, Interface Focus.

[30]  M. Soljačić,et al.  Effective theory of quadratic degeneracies , 2008, 0803.1854.

[31]  M. Soljačić,et al.  Enabling single-mode behavior over large areas with photonic Dirac cones , 2012, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Ya. B. Bazaliy,et al.  Extremal transmission at the Dirac point of a photonic band structure , 2007 .

[33]  A. Vishwanath,et al.  Charge transport in Weyl semimetals. , 2011, Physical review letters.

[34]  G. Armatas,et al.  Mesostructured germanium with cubic pore symmetry , 2006, Nature.

[35]  T. Hahn,et al.  International Tables for Crystallography: Volume A: Space-Group Symmetry , 1987 .

[36]  C. Kane,et al.  Dirac semimetal in three dimensions. , 2011, Physical review letters.

[37]  Gennady Shvets,et al.  Photonic topological insulators. , 2013, Nature materials.

[38]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[39]  Xiangdong Zhang Observing Zitterbewegung for photons near the Dirac point of a two-dimensional photonic crystal. , 2008, Physical review letters.

[40]  K. Sakoda Dirac cone in two- and three-dimensional metamaterials. , 2012, Optics express.

[41]  Theory of the three-dimensional quantum Hall effect in graphite. , 2007, Physical review letters.

[42]  Xueqin Huang,et al.  Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials. , 2011, Nature materials.

[43]  M. Soljačić,et al.  Reflection-free one-way edge modes in a gyromagnetic photonic crystal. , 2007, Physical review letters.

[44]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[45]  Leung,et al.  Photonic band structure: The face-centered-cubic case employing nonspherical atoms. , 1991, Physical review letters.

[46]  M. Gu,et al.  Fabrication and characterization of three-dimensional biomimetic chiral composites. , 2011, Optics express.

[47]  Augustine Urbas,et al.  Photonic properties of bicontinuous cubic microphases , 2002 .

[48]  Suresh Narayanan,et al.  Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales , 2010, Proceedings of the National Academy of Sciences.

[49]  Martin Maldovan,et al.  Triply periodic bicontinuous structures through interference lithography: a level-set approach. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[50]  F. D. M. Haldane,et al.  Analogs of quantum-Hall-effect edge states in photonic crystals , 2008 .

[51]  Stefan Nolte,et al.  Strain-induced pseudomagnetic field and photonic Landau levels in dielectric structures , 2012, Nature Photonics.

[52]  A. Schoen Infinite periodic minimal surfaces without self-intersections , 1970 .

[53]  J. Mañes Existence of bulk chiral fermions and crystal symmetry , 2011, 1109.2581.

[54]  Bouchaud,et al.  Spontaneous resonances and universal behavior in ferrimagnets: Effective-medium theory. , 1989, Physical review letters.

[55]  S. Andersson,et al.  A cubic structure consisting of a lipid bilayer forming an infinite periodic minimum surface of the gyroid type in the glycerolmonooleat-water system , 1984 .

[56]  Arkadii Krokhin Effective medium theory , 2014 .

[57]  M Gu,et al.  Circular dichroism in biological photonic crystals and cubic chiral nets. , 2011, Physical review letters.

[58]  S. Raghu,et al.  Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. , 2008, Physical review letters.

[59]  Boris E. Burakov,et al.  Advanced Materials , 2019, Springer Proceedings in Physics.