Modelling logistic growth by a new diffusion process: Application to biological systems

[1]  Patricia Román-Román,et al.  An R package for an efficient approximation of first-passage-time densities for diffusion processes based on the FPTL function , 2012, Appl. Math. Comput..

[2]  Huan Su,et al.  Optimal harvesting policy for stochastic Logistic population model , 2011, Appl. Math. Comput..

[3]  Ke Wang,et al.  The estimation of probability distribution of SDE by only one sample trajectory , 2011, Comput. Math. Appl..

[4]  Theodore Modis US Nobel laureates: Logistic growth versus Volterra–Lotka , 2011 .

[5]  Brian Gallagher,et al.  Peak oil analyzed with a logistic function and idealized Hubbert curve , 2011 .

[6]  Stan Lipovetsky,et al.  Double logistic curve in regression modeling , 2010 .

[7]  P. Román-Román,et al.  A diffusion process to model generalized von Bertalanffy growth patterns: fitting to real data. , 2010, Journal of theoretical biology.

[8]  Zoltán Varga,et al.  Observation and control in a model of a cell population affected by radiation , 2009, Biosyst..

[9]  E. Heron,et al.  Bayesian inference for a stochastic logistic model with switching points , 2008 .

[10]  Xiping Sun,et al.  Stability analysis of a stochastic logistic model with nonlinear diffusion term , 2008 .

[11]  Patricia Román-Román,et al.  First-passage-time location function: Application to determine first-passage-time densities in diffusion processes , 2008, Comput. Stat. Data Anal..

[12]  R. Gutiérrez-Jáimez,et al.  A new Gompertz-type diffusion process with application to random growth. , 2007, Mathematical biosciences.

[13]  H. Schurz MODELING, ANALYSIS AND DISCRETIZATION OF STOCHASTIC LOGISTIC EQUATIONS , 2007 .

[14]  Christos H. Skiadas,et al.  A new modeling approach investigating the diffusion speed of mobile telecommunication services in EU-15 , 2006 .

[15]  Nuria Rico,et al.  APPROXIMATE AND GENERALIZED CONFIDENCE BANDS FOR SOME PARAMETRIC FUNCTIONS OF THE LOGNORMAL DIFFUSION PROCESS WITH EXOGENOUS FACTORS , 2006 .

[16]  A. Tsoularis,et al.  Analysis of logistic growth models. , 2002, Mathematical biosciences.

[17]  A. Yu. Shomakhov A Method of Optimal Estimation of Parameters of a Logistic Curve , 2001 .

[18]  Christos H. Skiadas,et al.  A Stochastic Logistic Innovation Diffusion Model Studying the Electricity Consumption in Greece and the United States , 1999 .

[19]  Colin P.D. Birch,et al.  A New Generalized Logistic Sigmoid Growth Equation Compared with the Richards Growth Equation , 1999 .

[20]  L. Ricciardi,et al.  First-passage-time densities for time-non-homogeneous diffusion processes , 1997, Journal of Applied Probability.

[21]  M. Artzrouni,et al.  Stochastic differential equations in mathematical demography: a review , 1990 .

[22]  H C Tuckwell,et al.  Logistic population growth under random dispersal. , 1987, Bulletin of mathematical biology.

[23]  H C Tuckwell,et al.  A study of some diffusion models of population growth. , 1974, Theoretical population biology.