Direct Liquid Coating of Chalcopyrite Light‐Absorbing Layers for Photovoltaic Devices

Liquid deposition approaches for chalcopyrite films used in thin-film photovoltaic devices are reviewed. Most of the targeted materials are based on Cu-In or Cu-In-Ga sulfides and selenides (i.e., CIS or CIGS, respectively), although recently related alternative materials based on abundant and nontoxic elements such as the kesterite Cu 2 ZnSnS 4 have been actively investigated. By direct liquid coating we refer collectively to a variety of techniques characterized by distributing a liquid or a paste to the surface of a substrate, followed by necessary thermal/chemical treatments to achieve the desired phase. The deposition media used are solutions or particle (usually submicrometer size) suspensions of metal oxide, organic and inorganic compounds, including metal chalcogenide species. The deposition techniques used are mainly printing and spin-coating, although any standard process such as spraying, dip-coating or slit casting can be applied. In contrast to other widely investigated liquid-coating methods such as chemical bath and electrodeposition, in which relatively slower solid film growth occurs during the actual deposition step, the techniques discussed in this Microreview are mainly sequential, featuring rapid formation of a precursor film with well-defined metal stoichiometry. The precursor film is then transformed by a thermal treatment, generally in a chalcogen-containing atmosphere, to the final crystalline layer. This approach permits the use of low-cost and high-throughput equipment and the deployment of large-scale production facilities with lower capital investment. Although many of the methods discussed are under laboratory development, there are already industrial start-ups employing these promising methods for future large-scale photovoltaic production.

[1]  E. Chassaing,et al.  New insights in the electrodeposition mechanism of CuInSe2thin films for solar cell applications , 2008 .

[2]  M. Beck,et al.  Thin-film copper indium diselenide prepared by selenization of copper indium oxide formed by spray pyrolysis , 1996 .

[3]  Frances S. Ligler,et al.  Comparison of chemical cleaning methods of glass in preparation for silanization , 1999 .

[4]  J. Sánchez-Royo,et al.  CuInS2 Films for Photovoltaic Applications Deposited by a Low-Cost Method , 2006 .

[5]  Wei Liu,et al.  A High‐Efficiency Solution‐Deposited Thin‐Film Photovoltaic Device , 2008 .

[6]  J. P. Connolly,et al.  Cu(In,Ga)(S,Se)2 solar cells and modules by electrodeposition , 2005 .

[7]  P. Escribano,et al.  Cu2ZnSnS4 films deposited by a soft-chemistry method , 2009 .

[8]  M. Cima,et al.  Three-Dimensional Printing: Rapid Tooling and Prototypes Directly from a CAD Model , 1990 .

[9]  D. Meissner,et al.  Monograin materials for solar cells , 2009 .

[10]  E. Chassaing,et al.  CIGSS films prepared by sol-gel route , 2009 .

[11]  R. O’Hayre,et al.  Atmospheric pressure synthesis of In_2Se_3, Cu_2Se, and CuInSe_2 without external selenization from solution precursors , 2009 .

[12]  R. Scheer,et al.  Real-time studies of phase transformations in Cu-In-Se-S thin films. 1. Intermetallic phase transformations , 2006 .

[13]  T. Nakada,et al.  Direct evidence of Cd diffusion into Cu(In, Ga)Se2 thin films during chemical-bath deposition process of CdS films , 1999 .

[14]  M. Edoff,et al.  Influence from front contact sheet resistance on extracted diode parameters in CIGS solar cells , 2008 .

[15]  D. Hariskos,et al.  Highly efficient CIS solar cells and modules made by the co-evaporation process , 2009 .

[16]  Jürgen H. Werner,et al.  Alternative back contact materials for thin film Cu(In,Ga)Se2 solar cells , 2003 .

[17]  Hideaki Araki,et al.  Development of CZTS-based thin film solar cells , 2009 .

[18]  M. W. Denhoff,et al.  The effect of the front contact sheet resistance on solar cell performance , 2009 .

[19]  P. Escribano,et al.  Influence of treatment conditions on chalcopyrite films deposited at atmospheric pressure , 2008 .

[20]  A. Pérez‐Rodríguez,et al.  Real-time study of phase transformations in Cu–In chalcogenide thin films using in situ Raman spectroscopy and XRD , 2005 .

[21]  P. Parilla,et al.  Cu-In-Ga-Se nanoparticle colloids as spray deposition precursors for Cu(In, Ga)Se2 solar cell materials , 1998 .

[22]  M. Cocivera,et al.  Preparation of copper indium diselenide by selenization of copper indium oxide , 1993 .

[23]  M. Bär,et al.  Spray‐ILGAR indium sulfide buffers for Cu(In,Ga)(S,Se)2 solar cells , 2005 .

[24]  Reiner Klenk,et al.  Efficient CuInS2 solar cells from a rapid thermal process (RTP) , 2001 .

[25]  R. Scheer,et al.  Solar cells based on CuInS 2an overview , 2005 .

[26]  J. Sites,et al.  15.4% CuIn1−xGaxSe2-based photovoltaic cells from solution-based precursor films , 2000 .

[27]  A. Meeder,et al.  Pilot production of large-area CuInS2-based solar modules , 2007 .

[28]  A. Romano-Rodríguez,et al.  Combined in-depth scanning Auger microscopy and Raman scattering characterisation of CuInS2 polycrystalline films , 2001 .

[29]  A. Kunioka,et al.  High-efficiency cadmium-free Cu(In,Ga)Se/sub 2/ thin-film solar cells with chemically deposited ZnS buffer layers , 1999 .

[30]  Hisao Uchiki,et al.  Preparation of Cu2ZnSnS4 thin films by sulfurizing sol–gel deposited precursors , 2007 .

[31]  A. Ennaoui,et al.  The electronic structure of the [Zn(S,O)/ZnS]/CuInS2 heterointerface – Impact of post-annealing , 2006 .

[32]  A. Zunger,et al.  Band structure and stability of zinc-blende-based semiconductor polytypes , 1999 .

[33]  Enn Mellikov,et al.  Monograin layer solar cells , 2003 .

[34]  R. Klenk,et al.  A model for the successful growth of polycrystalline films of CuInSe2 by multisource physical vacuum evaporation , 1993 .

[35]  A. Feltrin,et al.  Material considerations for terawatt level deployment of photovoltaics , 2008 .

[36]  M. Powalla,et al.  Large-area CIGS modules: Pilot line production and new developments , 2006 .

[37]  Wei Liu,et al.  Hydrazine-based deposition route for device-quality CIGS films , 2009 .

[38]  Omar Isaac Asensio,et al.  Non-vacuum processing of CuIn1−xGaxSe2 solar cells on rigid and flexible substrates using nanoparticle precursor inks , 2003 .

[39]  R. Hock,et al.  A thermodynamical approach to the formation reactions of sodium-doped Cu(In,Ga)Se2 , 2006 .

[40]  Martin A. Green,et al.  Solar cell efficiency tables (Version 34) , 2009 .

[41]  O. Morton Solar energy: A new day dawning?: Silicon Valley sunrise , 2006, Nature.

[42]  Takeshi Kojima,et al.  Fabrication of wide-gap Cu(In1−xGax)Se2 thin film solar cells: a study on the correlation of cell performance with highly resistive i-ZnO layer thickness , 2005 .

[43]  T. Anderson,et al.  Epitaxial growth and characterization of CuInSe2 crystallographic polytypes , 2002 .

[44]  R. Klenk,et al.  Electro deposited In2S3 buffer layers for CuInS2 solar cells , 2008 .

[45]  Wilhelm Warta,et al.  Solar cell efficiency tables (Version 32) , 2008 .

[46]  I. Repins,et al.  19·9%‐efficient ZnO/CdS/CuInGaSe2 solar cell with 81·2% fill factor , 2008 .

[47]  Hisao Uchiki,et al.  Cu2ZnSnS4 thin film solar cells prepared by non-vacuum processing , 2009 .

[48]  Hans Zogg,et al.  CIS and CIGS layers from selenized nanoparticle precursors , 2003 .

[49]  Yuwen Zhao The future of PV industry and SG‐Si materials , 2009 .

[50]  Daniel Gamota,et al.  Printed Organic and Molecular Electronics , 2004 .

[51]  F. Kessler,et al.  Technological aspects of flexible CIGS solar cells and modules , 2004 .

[52]  I. Konovalov,et al.  Material requirements for CIS solar cells , 2004 .

[53]  D. Hariskos,et al.  Buffer layers in Cu(In,Ga)Se2 solar cells and modules , 2005 .

[54]  I. Repins,et al.  Se activity and its effect on Cu(In,Ga)Se2 photovoltaic thin films , 2009 .

[55]  A. Ennaoui,et al.  Highly‐efficient Cd‐free CuInS2 thin‐film solar cells and mini‐modules with Zn(S,O) buffer layers prepared by an alternative chemical bath process , 2006 .

[56]  A. Tiwari,et al.  Low cost processing of CIGS thin film solar cells , 2004 .

[57]  A. Pérez‐Rodríguez,et al.  Quasi real-time Raman studies on the growth of Cu-In-S thin films , 2004 .

[58]  A. Weber,et al.  In situ investigation of the formation of Cu(In,Ga)Se2 from selenised metallic precursors by X-ray diffraction—The impact of Gallium, Sodium and Selenium excess , 2005 .

[59]  Steve Hegedus,et al.  Thin film solar modules: the low cost, high throughput and versatile alternative to Si wafers , 2006 .

[60]  W. Shafarman,et al.  Surface sulfurization studies of Cu(InGa)Se2 thin film , 2006 .

[61]  Ferreira,et al.  First-principles calculation of the order-disorder transition in chalcopyrite semiconductors. , 1992, Physical review. B, Condensed matter.

[62]  Bulent M. Basol,et al.  Low cost techniques for the preparation of Cu(In,Ga)(Se,S) 2 absorber layers , 2000 .

[63]  A. Eicke,et al.  CIGS thin-film solar cells on steel substrates , 2009 .

[64]  D. Mitzi Solution Processing of Chalcogenide Semiconductors via Dimensional Reduction , 2008 .

[65]  J. R. Botha,et al.  Properties of CuIn(Se,S)2 thin films prepared by two-step growth processes , 2003 .

[66]  F. Krebs Fabrication and processing of polymer solar cells: A review of printing and coating techniques , 2009 .

[67]  Olivier Roussel,et al.  First Stages of CuInSe2 Electrodeposition from Cu(II)-In(III)-Se(IV) Acidic Solutions on Polycrystalline Mo Films , 2008 .

[68]  Volker Probst,et al.  Second generation CIS solar modules , 2004 .

[69]  H. Zogg,et al.  Low-cost CIGS solar cells by paste coating and selenization , 2005 .

[70]  Sigurd Wagner,et al.  CuInSe2/CdS heterojunction photovoltaic detectors , 1974 .

[71]  R. Scheer,et al.  Determination of the quality of CuInS2-based solar cells combining Raman and photoluminescence spectroscopy , 2005 .

[72]  E. Chassaing,et al.  One-step electrodeposited CuInSe2 thin films studied by Raman spectroscopy , 2007 .

[73]  C. Eberspacher,et al.  Thin-film CIS alloy PV materials fabricated using non-vacuum, particles-based techniques , 2001 .

[74]  B. Yang,et al.  RF reactive sputter deposition and characterization of transparent CuAlO2 thin films , 2006 .

[75]  R. Mickelsen,et al.  High photocurrent polycrystalline thin‐film CdS/CuInSe2 solar cella , 1980 .

[76]  Harry Hahn,et al.  Untersuchungen über ternäre Chalkogenide. V. Über einige ternäre Chalkogenide mit Chalkopyritstruktur , 1953 .

[77]  J. Raudoja,et al.  Crystal quality studies of CuInS2 films prepared by spray pyrolysis , 2005 .

[78]  D. Mitzi,et al.  Solvent properties of hydrazine in the preparation of metal chalcogenide bulk materials and films. , 2009, Dalton transactions.

[79]  B. Stanbery Copper Indium Selenides and Related Materials for Photovoltaic Devices , 2002 .

[80]  M. Powalla,et al.  Approaches to flexible CIGS thin-film solar cells , 2005 .

[81]  A. Romano-Rodríguez,et al.  MicroRaman scattering from polycrystalline CuInS2 films: structural analysis , 2000 .

[82]  Aloysius F. Hepp,et al.  Single Source Precursors for Fabrication of I-III-VI2 Thin-film Solar Cells via Spray CVD , 2003 .