Direct Liquid Coating of Chalcopyrite Light‐Absorbing Layers for Photovoltaic Devices
暂无分享,去创建一个
[1] E. Chassaing,et al. New insights in the electrodeposition mechanism of CuInSe2thin films for solar cell applications , 2008 .
[2] M. Beck,et al. Thin-film copper indium diselenide prepared by selenization of copper indium oxide formed by spray pyrolysis , 1996 .
[3] Frances S. Ligler,et al. Comparison of chemical cleaning methods of glass in preparation for silanization , 1999 .
[4] J. Sánchez-Royo,et al. CuInS2 Films for Photovoltaic Applications Deposited by a Low-Cost Method , 2006 .
[5] Wei Liu,et al. A High‐Efficiency Solution‐Deposited Thin‐Film Photovoltaic Device , 2008 .
[6] J. P. Connolly,et al. Cu(In,Ga)(S,Se)2 solar cells and modules by electrodeposition , 2005 .
[7] P. Escribano,et al. Cu2ZnSnS4 films deposited by a soft-chemistry method , 2009 .
[8] M. Cima,et al. Three-Dimensional Printing: Rapid Tooling and Prototypes Directly from a CAD Model , 1990 .
[9] D. Meissner,et al. Monograin materials for solar cells , 2009 .
[10] E. Chassaing,et al. CIGSS films prepared by sol-gel route , 2009 .
[11] R. O’Hayre,et al. Atmospheric pressure synthesis of In_2Se_3, Cu_2Se, and CuInSe_2 without external selenization from solution precursors , 2009 .
[12] R. Scheer,et al. Real-time studies of phase transformations in Cu-In-Se-S thin films. 1. Intermetallic phase transformations , 2006 .
[13] T. Nakada,et al. Direct evidence of Cd diffusion into Cu(In, Ga)Se2 thin films during chemical-bath deposition process of CdS films , 1999 .
[14] M. Edoff,et al. Influence from front contact sheet resistance on extracted diode parameters in CIGS solar cells , 2008 .
[15] D. Hariskos,et al. Highly efficient CIS solar cells and modules made by the co-evaporation process , 2009 .
[16] Jürgen H. Werner,et al. Alternative back contact materials for thin film Cu(In,Ga)Se2 solar cells , 2003 .
[17] Hideaki Araki,et al. Development of CZTS-based thin film solar cells , 2009 .
[18] M. W. Denhoff,et al. The effect of the front contact sheet resistance on solar cell performance , 2009 .
[19] P. Escribano,et al. Influence of treatment conditions on chalcopyrite films deposited at atmospheric pressure , 2008 .
[20] A. Pérez‐Rodríguez,et al. Real-time study of phase transformations in Cu–In chalcogenide thin films using in situ Raman spectroscopy and XRD , 2005 .
[21] P. Parilla,et al. Cu-In-Ga-Se nanoparticle colloids as spray deposition precursors for Cu(In, Ga)Se2 solar cell materials , 1998 .
[22] M. Cocivera,et al. Preparation of copper indium diselenide by selenization of copper indium oxide , 1993 .
[23] M. Bär,et al. Spray‐ILGAR indium sulfide buffers for Cu(In,Ga)(S,Se)2 solar cells , 2005 .
[24] Reiner Klenk,et al. Efficient CuInS2 solar cells from a rapid thermal process (RTP) , 2001 .
[25] R. Scheer,et al. Solar cells based on CuInS 2an overview , 2005 .
[26] J. Sites,et al. 15.4% CuIn1−xGaxSe2-based photovoltaic cells from solution-based precursor films , 2000 .
[27] A. Meeder,et al. Pilot production of large-area CuInS2-based solar modules , 2007 .
[28] A. Romano-Rodríguez,et al. Combined in-depth scanning Auger microscopy and Raman scattering characterisation of CuInS2 polycrystalline films , 2001 .
[29] A. Kunioka,et al. High-efficiency cadmium-free Cu(In,Ga)Se/sub 2/ thin-film solar cells with chemically deposited ZnS buffer layers , 1999 .
[30] Hisao Uchiki,et al. Preparation of Cu2ZnSnS4 thin films by sulfurizing sol–gel deposited precursors , 2007 .
[31] A. Ennaoui,et al. The electronic structure of the [Zn(S,O)/ZnS]/CuInS2 heterointerface – Impact of post-annealing , 2006 .
[32] A. Zunger,et al. Band structure and stability of zinc-blende-based semiconductor polytypes , 1999 .
[33] Enn Mellikov,et al. Monograin layer solar cells , 2003 .
[34] R. Klenk,et al. A model for the successful growth of polycrystalline films of CuInSe2 by multisource physical vacuum evaporation , 1993 .
[35] A. Feltrin,et al. Material considerations for terawatt level deployment of photovoltaics , 2008 .
[36] M. Powalla,et al. Large-area CIGS modules: Pilot line production and new developments , 2006 .
[37] Wei Liu,et al. Hydrazine-based deposition route for device-quality CIGS films , 2009 .
[38] Omar Isaac Asensio,et al. Non-vacuum processing of CuIn1−xGaxSe2 solar cells on rigid and flexible substrates using nanoparticle precursor inks , 2003 .
[39] R. Hock,et al. A thermodynamical approach to the formation reactions of sodium-doped Cu(In,Ga)Se2 , 2006 .
[40] Martin A. Green,et al. Solar cell efficiency tables (Version 34) , 2009 .
[41] O. Morton. Solar energy: A new day dawning?: Silicon Valley sunrise , 2006, Nature.
[42] Takeshi Kojima,et al. Fabrication of wide-gap Cu(In1−xGax)Se2 thin film solar cells: a study on the correlation of cell performance with highly resistive i-ZnO layer thickness , 2005 .
[43] T. Anderson,et al. Epitaxial growth and characterization of CuInSe2 crystallographic polytypes , 2002 .
[44] R. Klenk,et al. Electro deposited In2S3 buffer layers for CuInS2 solar cells , 2008 .
[45] Wilhelm Warta,et al. Solar cell efficiency tables (Version 32) , 2008 .
[46] I. Repins,et al. 19·9%‐efficient ZnO/CdS/CuInGaSe2 solar cell with 81·2% fill factor , 2008 .
[47] Hisao Uchiki,et al. Cu2ZnSnS4 thin film solar cells prepared by non-vacuum processing , 2009 .
[48] Hans Zogg,et al. CIS and CIGS layers from selenized nanoparticle precursors , 2003 .
[49] Yuwen Zhao. The future of PV industry and SG‐Si materials , 2009 .
[50] Daniel Gamota,et al. Printed Organic and Molecular Electronics , 2004 .
[51] F. Kessler,et al. Technological aspects of flexible CIGS solar cells and modules , 2004 .
[52] I. Konovalov,et al. Material requirements for CIS solar cells , 2004 .
[53] D. Hariskos,et al. Buffer layers in Cu(In,Ga)Se2 solar cells and modules , 2005 .
[54] I. Repins,et al. Se activity and its effect on Cu(In,Ga)Se2 photovoltaic thin films , 2009 .
[55] A. Ennaoui,et al. Highly‐efficient Cd‐free CuInS2 thin‐film solar cells and mini‐modules with Zn(S,O) buffer layers prepared by an alternative chemical bath process , 2006 .
[56] A. Tiwari,et al. Low cost processing of CIGS thin film solar cells , 2004 .
[57] A. Pérez‐Rodríguez,et al. Quasi real-time Raman studies on the growth of Cu-In-S thin films , 2004 .
[58] A. Weber,et al. In situ investigation of the formation of Cu(In,Ga)Se2 from selenised metallic precursors by X-ray diffraction—The impact of Gallium, Sodium and Selenium excess , 2005 .
[59] Steve Hegedus,et al. Thin film solar modules: the low cost, high throughput and versatile alternative to Si wafers , 2006 .
[60] W. Shafarman,et al. Surface sulfurization studies of Cu(InGa)Se2 thin film , 2006 .
[61] Ferreira,et al. First-principles calculation of the order-disorder transition in chalcopyrite semiconductors. , 1992, Physical review. B, Condensed matter.
[62] Bulent M. Basol,et al. Low cost techniques for the preparation of Cu(In,Ga)(Se,S) 2 absorber layers , 2000 .
[63] A. Eicke,et al. CIGS thin-film solar cells on steel substrates , 2009 .
[64] D. Mitzi. Solution Processing of Chalcogenide Semiconductors via Dimensional Reduction , 2008 .
[65] J. R. Botha,et al. Properties of CuIn(Se,S)2 thin films prepared by two-step growth processes , 2003 .
[66] F. Krebs. Fabrication and processing of polymer solar cells: A review of printing and coating techniques , 2009 .
[67] Olivier Roussel,et al. First Stages of CuInSe2 Electrodeposition from Cu(II)-In(III)-Se(IV) Acidic Solutions on Polycrystalline Mo Films , 2008 .
[68] Volker Probst,et al. Second generation CIS solar modules , 2004 .
[69] H. Zogg,et al. Low-cost CIGS solar cells by paste coating and selenization , 2005 .
[70] Sigurd Wagner,et al. CuInSe2/CdS heterojunction photovoltaic detectors , 1974 .
[71] R. Scheer,et al. Determination of the quality of CuInS2-based solar cells combining Raman and photoluminescence spectroscopy , 2005 .
[72] E. Chassaing,et al. One-step electrodeposited CuInSe2 thin films studied by Raman spectroscopy , 2007 .
[73] C. Eberspacher,et al. Thin-film CIS alloy PV materials fabricated using non-vacuum, particles-based techniques , 2001 .
[74] B. Yang,et al. RF reactive sputter deposition and characterization of transparent CuAlO2 thin films , 2006 .
[75] R. Mickelsen,et al. High photocurrent polycrystalline thin‐film CdS/CuInSe2 solar cella , 1980 .
[76] Harry Hahn,et al. Untersuchungen über ternäre Chalkogenide. V. Über einige ternäre Chalkogenide mit Chalkopyritstruktur , 1953 .
[77] J. Raudoja,et al. Crystal quality studies of CuInS2 films prepared by spray pyrolysis , 2005 .
[78] D. Mitzi,et al. Solvent properties of hydrazine in the preparation of metal chalcogenide bulk materials and films. , 2009, Dalton transactions.
[79] B. Stanbery. Copper Indium Selenides and Related Materials for Photovoltaic Devices , 2002 .
[80] M. Powalla,et al. Approaches to flexible CIGS thin-film solar cells , 2005 .
[81] A. Romano-Rodríguez,et al. MicroRaman scattering from polycrystalline CuInS2 films: structural analysis , 2000 .
[82] Aloysius F. Hepp,et al. Single Source Precursors for Fabrication of I-III-VI2 Thin-film Solar Cells via Spray CVD , 2003 .