Multimessenger tests of the weak equivalence principle from GW170817 and its electromagnetic counterparts

The coincident detection of a gravitational-wave (GW) event GW170817 with electromagnetic (EM) signals (e.g., a short gamma-ray burst SGRB 170817A or a macronova) from a binary neutron star merger within the nearby galaxy NGC 4933 provides a new, multimessenger test of the weak equivalence principle (WEP), extending the WEP test with GWs and photons. Assuming that the arrival time delay between the GW signals from GW170817 and the photons from SGRB 170817A or the macronova is mainly attributed to the gravitational potential of the Milky Way, we demonstrate that the strict upper limits on the deviation from the WEP are $\Delta \gamma<1.4\times10^{-3}$ for GW170817/macronova and $\Delta \gamma <5.9\times10^{-8}$ for GW170817/SGRB 170817A. A much more severe constraint on the WEP accuracy can be achieved ($\sim0.9\times10^{-10}$) for GW170817/SGRB 170817A when we consider the gravitational potential of the Virgo Cluster, rather than the Milky Way's gravity. This provides the tightest limit to date on the WEP through the relative differential variations of the $\gamma$ parameter for two different species of particles. Compared with other multimessenger (photons and neutrinos) results, our limit is 7 orders of magnitude tighter than that placed by the neutrinos and photons from supernova 1987A, and is almost as good as or is an improvement of 6 orders of magnitude over the limits obtained by the low-significance neutrinos correlated with GRBs and a blazar flare.

[1]  K. Ulaczyk,et al.  The Emergence of a Lanthanide-Rich Kilonova Following the Merger of Two Neutron Stars , 2017, 1710.05455.

[2]  Armin Rest,et al.  The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. I. Discovery of the Optical Counterpart Using the Dark Energy Camera , 2017, The Astrophysical Journal.

[3]  B. Paczyński Gamma-ray bursters at cosmological distances , 1986 .

[4]  Saurabh W. Jha,et al.  The Discovery of the Electromagnetic Counterpart of GW170817: Kilonova AT 2017gfo/DLT17ck , 2017, 1710.05854.

[5]  Y. Wang,et al.  High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube , 2016, 1602.05411.

[6]  B. Liao,et al.  Testing the Einstein's equivalence principle with polarized gamma-ray bursts , 2017, 1706.00889.

[7]  R. Poggiani Multi-messenger Observations of a Binary Neutron Star Merger , 2019, Proceedings of Frontier Research in Astrophysics – III — PoS(FRAPWS2018).

[8]  P. Giommi,et al.  Localization and broadband follow-up of the gravitational-wave transient GW150914 , 2016, 1602.08492.

[9]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[10]  Lixin Xu,et al.  Test of the Weak Equivalence Principle using LIGO observations of GW150914 and Fermi observations of GBM transient 150914 , 2016, 1604.06668.

[11]  D. Thompson,et al.  Coincidence of a high-fluence blazar outburst with a PeV-energy neutrino event , 2016, Nature Physics.

[12]  D. Kaplan,et al.  LIMITS ON EINSTEIN’S EQUIVALENCE PRINCIPLE FROM THE FIRST LOCALIZED FAST RADIO BURST FRB 150418 , 2016, 1602.07643.

[13]  anonymous,et al.  Erratum: GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2 [Phys. Rev. Lett. 118, 221101 (2017)]. , 2018, Physical review letters.

[14]  J. Prochaska,et al.  Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source , 2017, Science.

[15]  The Ligo Scientific Collaboration,et al.  GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence , 2016, 1606.04855.

[16]  The Ligo Scientific Collaboration,et al.  Observation of Gravitational Waves from a Binary Black Hole Merger , 2016, 1602.03837.

[17]  Abraham Loeb,et al.  ELECTROMAGNETIC COUNTERPARTS TO BLACK HOLE MERGERS DETECTED BY LIGO , 2016, 1602.04735.

[18]  Kohta Murase,et al.  High-energy Neutrino Emission from Short Gamma-Ray Bursts: Prospects for Coincident Detection with Gravitational Waves , 2017, 1708.07075.

[19]  A. Castro-Tirado,et al.  A peculiar low-luminosity short gamma-ray burst from a double neutron star merger progenitor , 2017, Nature Communications.

[20]  Y. Wang,et al.  GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. , 2016, Physical review. D..

[21]  Longo,et al.  New precision tests of the Einstein equivalence principle from SN1987A. , 1988, Physical review letters.

[22]  M. Rees,et al.  Optical and Long-Wavelength Afterglow from Gamma-Ray Bursts , 1996, astro-ph/9606043.

[23]  A. Nusser ON TESTING THE EQUIVALENCE PRINCIPLE WITH EXTRAGALACTIC BURSTS , 2016, 1601.03636.

[24]  P. O. Hulth,et al.  AN ALL-SKY SEARCH FOR THREE FLAVORS OF NEUTRINOS FROM GAMMA-RAY BURSTS WITH THE ICECUBE NEUTRINO OBSERVATORY , 2016, 1601.06484.

[25]  Bing Zhang,et al.  Testing Einstein's weak equivalence principle with a 0.4-nanosecond giant pulse of the Crab pulsar , 2016, 1608.07657.

[26]  C. A. Sarmiento,et al.  Ultrahigh-energy neutrino follow-up of gravitational wave events GW150914 and GW151226 with the Pierre Auger Observatory , 2016, Physical Review D.

[27]  David Blair,et al.  Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A , 2017, 1710.05834.

[28]  Yi Hu,et al.  Optical observations of LIGO source GW 170817 by the Antarctic Survey Telescopes at Dome A, Antarctica. , 2017, Science bulletin.

[29]  P. Côté,et al.  The ACS Virgo Cluster Survey , 2002 .

[30]  P. M'esz'aros,et al.  COSMIC TRANSIENTS TEST EINSTEIN’S EQUIVALENCE PRINCIPLE OUT TO GeV ENERGIES , 2015, 1509.00150.

[31]  S. Desai,et al.  Galactic Shapiro delay to the Crab pulsar and limit on weak equivalence principle violation , 2016, 1612.02532.

[32]  L. S. Collaboration,et al.  Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A , 2017 .

[33]  P. M'esz'aros,et al.  Testing Einstein's weak equivalence principle with gravitational waves , 2016, 1602.01566.

[34]  Z. Chang,et al.  Testing Einstein's Equivalence Principle with Short Gamma-ray Bursts , 2016, 1605.02834.

[35]  A. Kienlin,et al.  GRB 170817A: Fermi GBM detection. , 2017 .

[36]  E. Bozzo,et al.  INTEGRAL Detection of the First Prompt Gamma-Ray Signal Coincident with the Gravitational-wave Event GW170817 , 2017, 1710.05449.

[37]  V. M. Lipunov,et al.  MASTER Optical Detection of the First LIGO/Virgo Neutron Star Binary Merger GW170817 , 2017, 1710.05461.

[38]  R. Genzel,et al.  MONITORING STELLAR ORBITS AROUND THE MASSIVE BLACK HOLE IN THE GALACTIC CENTER , 2008, 0810.4674.

[39]  B. A. Boom,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. , 2017, Physical review letters.

[40]  K. S. Thorne,et al.  Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors , 2010, 1003.2480.

[41]  Von Welch,et al.  Reproducing GW150914: The First Observation of Gravitational Waves From a Binary Black Hole Merger , 2016, Computing in Science & Engineering.

[42]  C. A. Wilson-Hodge,et al.  An Ordinary Short Gamma-Ray Burst with Extraordinary Implications: Fermi-GBM Detection of GRB 170817A , 2017, 1710.05446.

[43]  E. Berger,et al.  AN r-PROCESS KILONOVA ASSOCIATED WITH THE SHORT-HARD GRB 130603B , 2013, 1306.3960.

[44]  P. Mészáros,et al.  Testing Einstein's Equivalence Principle With Fast Radio Bursts. , 2015, Physical review letters.

[45]  M. Hartz,et al.  SEARCH FOR NEUTRINOS IN SUPER-KAMIOKANDE ASSOCIATED WITH GRAVITATIONAL-WAVE EVENTS GW150914 AND GW151226 , 2016, Universe.

[46]  B. A. Boom,et al.  GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. , 2017, Physical review letters.

[47]  P. McMillan,et al.  Mass models of the Milky Way , 2011, 1102.4340.

[48]  M. Livio,et al.  Nucleosynthesis, neutrino bursts and γ-rays from coalescing neutron stars , 1989, Nature.

[49]  Bing Zhang MERGERS OF CHARGED BLACK HOLES: GRAVITATIONAL-WAVE EVENTS, SHORT GAMMA-RAY BURSTS, AND FAST RADIO BURSTS , 2016, 1602.04542.

[50]  A. King,et al.  Electromagnetic Signals Following Stellar-mass Black Hole Mergers , 2017, 1703.07794.

[51]  Xiang-Yu Wang,et al.  Testing the Equivalence Principle and Lorentz Invariance with PeV Neutrinos from Blazar Flares. , 2016, Physical review letters.

[52]  Dovi Poznanski,et al.  Optical emission from a kilonova following a gravitational-wave-detected neutron-star merger , 2017, Nature.

[53]  S. Desai,et al.  Constraints on frequency-dependent violations of Shapiro delay from GW150914 , 2016, 1602.04779.

[54]  Krauss,et al.  Test of the weak equivalence principle for neutrinos and photons. , 1988, Physical review letters.

[55]  Brian D. Metzger,et al.  Electromagnetic Signatures of Neutron Star Mergers in the Advanced LIGO Era , 2015, 1512.05435.

[56]  Yi-ming Hu,et al.  GRB/GW association: Long-short GRB candidates, time-lag, measuring gravitational wave velocity and testing Einstein's equivalence principle , 2016, 1601.00180.

[57]  T. Piran,et al.  Gamma-ray bursts as the death throes of massive binary stars , 1992, astro-ph/9204001.

[58]  Li-Xin Li,et al.  Transient Events from Neutron Star Mergers , 1998 .

[59]  J. Goodman,et al.  Are gamma-ray bursts optically thick? , 1986 .

[60]  Davide Lazzati,et al.  SHORT GAMMA-RAY BURSTS FROM THE MERGER OF TWO BLACK HOLES , 2016, 1602.05140.

[61]  E. Berger,et al.  WHAT IS THE MOST PROMISING ELECTROMAGNETIC COUNTERPART OF A NEUTRON STAR BINARY MERGER? , 2011, 1108.6056.

[62]  Clifford M. Will,et al.  The Confrontation between General Relativity and Experiment , 2001, Living reviews in relativity.

[63]  Yue Zhu,et al.  Insight-HXMT observations of the first binary neutron star merger GW170817 , 2017 .

[64]  P. Fouqué,et al.  Structure, mass and distance of the Virgo cluster from a Tolman-Bondi model , 2001, astro-ph/0106261.

[65]  Joss Bland-Hawthorn,et al.  KINEMATICS OF THE STELLAR HALO AND THE MASS DISTRIBUTION OF THE MILKY WAY USING BLUE HORIZONTAL BRANCH STARS , 2012, 1210.7527.

[66]  B. A. Boom,et al.  GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. , 2017, Physical review letters.

[67]  P. N. Bhat,et al.  FERMI GBM OBSERVATIONS OF LIGO GRAVITATIONAL-WAVE EVENT GW150914 , 2016, 1602.03920.

[68]  I. Shapiro Fourth Test of General Relativity , 1964 .

[69]  Q. Yuan,et al.  The GW170817/GRB 170817A/AT 2017gfo Association: Some Implications for Physics and Astrophysics , 2017, 1710.05805.

[70]  P. M'esz'aros,et al.  Limits on the neutrino velocity, Lorentz invariance, and the weak equivalence principle with TeV neutrinos from gamma-ray bursts , 2016, 1603.07568.

[71]  J. Tonry,et al.  The ACS Virgo Cluster Survey. XIII. SBF Distance Catalog and the Three-dimensional Structure of the Virgo Cluster , 2007, astro-ph/0702510.

[72]  Jie-Shuang Wang,et al.  TESTS OF THE EINSTEIN EQUIVALENCE PRINCIPLE USING TeV BLAZARS , 2016, 1601.04145.

[73]  B. Gong,et al.  Test of Weak Equivalence Principle with the Multi-band Timing of the Crab Pulsar , 2016, 1612.00717.

[74]  P. M'esz'aros,et al.  New test of weak equivalence principle using polarized light from astrophysical events , 2017, 1703.09935.

[75]  The Ligo Scientific Collaboration,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral , 2017, 1710.05832.

[76]  Xuefeng Wu,et al.  Testing Einstein's Equivalence Principle with supercluster Laniakea's gravitational field , 2016, 1604.02566.