Discretization And Weak Invariants

We consider the preservation of weak solution invariants in the time integration of ordinary diier-ential equations (ODEs). Recent research has concentrated on obtaining symplectic discretizations of Hamiltonian systems and schemes that preserve certain rst integrals (i.e. strong invariants). In this article, we examine the connection between constrained systems and ODEs with weak invariants for both Hamiltonian and non-Hamiltonian systems. Runge-Kutta and partitioned Runge-Kutta methods are considered, and suucient conditions are derived for preservation of a class of weak invariants. AMS(MOS) subject classiications. 65L05

[1]  Uri M. Ascher,et al.  Stability of Computational Methods for Constrained Dynamics Systems , 1991, SIAM J. Sci. Comput..

[2]  B. Leimkuhler,et al.  Stabilization and projection methods for multibody dynamics , 1990 .

[3]  L. Jay Symplectic partitioned Runge-Kutta methods for constrained Hamiltonian systems , 1996 .

[4]  Ronald L. Huston,et al.  Dynamics of Multibody Systems , 1988 .

[5]  J. P. Ryckaert The Method of Constraints: Application to a Simple N-Alkane Model , 1990 .

[6]  R. A. Walt,et al.  The numerical solution of algebraic equations , 1979 .

[7]  R. McLachlan,et al.  Equivariant constrained symplectic integration , 1995 .

[8]  Reich Sebastian,et al.  Symplectic Integration of Constrained Hamiltonian Systems by Runge-Kutta Methods , 1993 .

[9]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[10]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[11]  Parviz E. Nikravesh,et al.  Computer-aided analysis of mechanical systems , 1988 .

[12]  Gary P. Morriss,et al.  Constrained molecular dynamics: Simulations of liquid alkanes with a new algorithm , 1986 .

[13]  P. Olver Applications of Lie Groups to Differential Equations , 1986 .

[14]  B. Leimkuhler,et al.  Numerical solution of differential-algebraic equations for constrained mechanical motion , 1991 .

[15]  C. W. Gear,et al.  Automatic integration of Euler-Lagrange equations with constraints , 1985 .

[16]  G. J. Cooper Stability of Runge-Kutta Methods for Trajectory Problems , 1987 .

[17]  Ralph Abraham,et al.  Foundations Of Mechanics , 2019 .

[18]  J. Baumgarte Stabilization of constraints and integrals of motion in dynamical systems , 1972 .

[19]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[20]  F. Potra,et al.  On the Numerical Solution of Euler-Lagrange Equations∗ , 1991 .

[21]  E. Eich Convergence results for a coordinate projection method applied to mechanical systems with algebraic constraints , 1993 .

[22]  W. Rheinboldt Numerical analysis of parametrized nonlinear equations , 1986 .

[23]  L. Petzold Order results for implicit Runge-Kutta methods applied to differential/algebraic systems , 1986 .

[24]  C. W. Gear,et al.  Maintianing solution invariants in the numerical solution of ODEs , 1986 .

[25]  J. M. Sanz-Serna,et al.  Symplectic integrators for Hamiltonian problems: an overview , 1992, Acta Numerica.

[26]  B. Leimkuhler,et al.  Symplectic integration of constrained Hamiltonian systems , 1994 .

[27]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .