Influence of active-site proximity in zeolites on Brønsted acid-catalyzed reactions at the microscopic and mesoscopic levels

[1]  S. Mintova,et al.  Superacidity and Spectral Signatures of Hydroxyl Groups in Zeolites , 2022, SSRN Electronic Journal.

[2]  Jihong Yu,et al.  Construction of Single-Crystalline Hierarchical ZSM-5 with Open Nanoarchitectures via Anisotropic-Kinetics Transformation for the Methanol-to-Hydrocarbons Reaction. , 2022, Angewandte Chemie.

[3]  W. Qian,et al.  Rational Design of Zinc/Zeolite Catalyst: Selective Formation of p-Xylene from Methanol to Aromatics Reaction. , 2022, Angewandte Chemie.

[4]  Paul J. Dauenhauer,et al.  Core-shell and Egg-shell Zeolite Catalysts for Enhanced Hydrocarbon Processing , 2021, Journal of Catalysis.

[5]  Zhongmin Liu,et al.  Molecular Routes of Dynamic Autocatalysis for Methanol-to-Hydrocarbons Reaction. , 2021, Journal of the American Chemical Society.

[6]  J. Gascón,et al.  Aromatics Production via Methanol-Mediated Transformation Routes , 2021 .

[7]  F. Deng,et al.  Solid-state NMR studies of internuclear correlations for characterizing catalytic materials. , 2021, Chemical Society reviews.

[8]  H. Friedrich,et al.  Studying Reaction Mechanisms in Solution Using a Distributed Electron Microscopy Method. , 2021, ACS nano.

[9]  Rajamani Gounder,et al.  Developing quantitative synthesis-structure-function relations for framework aluminum arrangement effects in zeolite acid catalysis , 2021, Journal of Catalysis.

[10]  J. Gascón,et al.  Highly Selective and Stable Production of Aromatics via High-Pressure Methanol Conversion , 2021 .

[11]  Chunyi Li,et al.  Dehydrogenation of light alkanes to mono-olefins. , 2021, Chemical Society reviews.

[12]  Jinlong Gong,et al.  Propane dehydrogenation: catalyst development, new chemistry, and emerging technologies. , 2021, Chemical Society reviews.

[13]  Jing-Pei Cao,et al.  Influence of Hollow ZSM-5 Zeolites Prepared by Treatment with Different Alkalis on the Catalytic Conversion of Methanol to Aromatics , 2020 .

[14]  Y. Schuurman,et al.  Faster transport in hollow zeolites , 2020, Microporous and Mesoporous Materials.

[15]  G. Wang,et al.  Hollow Carbon Sphere Nanoreactors Loaded with PdCu Nanoparticles: Void‐Confinement Effects in Liquid‐Phase Hydrogenations , 2020, Angewandte Chemie.

[16]  M. Hansen,et al.  Hydrogen Bond Formation of Brønsted Acid Sites in Zeolites , 2020 .

[17]  Zhongmin Liu,et al.  Methanol to Olefins Reaction Route Based on Methylcyclopentadienes as Critical Intermediates , 2019, ACS Catalysis.

[18]  Minkee Choi,et al.  Unveiling coke formation mechanism in MFI zeolites during methanol-to-hydrocarbons conversion , 2019, Journal of Catalysis.

[19]  J. Lercher,et al.  Critical role of formaldehyde during methanol conversion to hydrocarbons , 2019, Nature Communications.

[20]  F. Krumeich,et al.  Composition and Structure Dependent Mesopore/Macropore Formation in Zeolites by Desilication , 2019, The Journal of Physical Chemistry C.

[21]  J. Dědeček,et al.  Tuning the Aluminum Distribution in Zeolites to Increase their Performance in Acid-Catalyzed Reactions. , 2018, ChemSusChem.

[22]  F. Krumeich,et al.  Heavy atom labeling enables silanol defect visualization in silicalite-1 crystals. , 2019, Chemical communications.

[23]  B. Weckhuysen,et al.  Recent trends and fundamental insights in the methanol-to-hydrocarbons process , 2018, Nature Catalysis.

[24]  E. Borfecchia,et al.  High Zn/Al ratios enhance dehydrogenation vs hydrogen transfer reactions of Zn-ZSM-5 catalytic systems in methanol conversion to aromatics , 2018 .

[25]  Landong Li,et al.  Effect of n-butanol cofeeding on the methanol to aromatics conversion over Ga-modified nano H-ZSM-5 and its mechanistic interpretation , 2018 .

[26]  Xuefeng Guo,et al.  Cooperativity of adjacent Brønsted acid sites in MFI zeolite channel leads to enhanced polarization and cracking of alkanes , 2017 .

[27]  Z. Sobalík,et al.  Proton proximity – New key parameter controlling adsorption, desorption and activity in propene oligomerization over H-ZSM-5 zeolites , 2016 .

[28]  Gonzalo Prieto,et al.  Hollow Nano- and Microstructures as Catalysts. , 2016, Chemical reviews.

[29]  C. Veloso,et al.  Ethanol conversion into olefins and aromatics over HZSM-5 zeolite: Influence of reaction conditions and surface reaction studies , 2016 .

[30]  Pengfei Wang,et al.  Conversion of Methanol to Olefins over H-ZSM-5 Zeolite: Reaction Pathway Is Related to the Framework Aluminum Siting , 2016 .

[31]  Wilhelm Schwieger,et al.  Catalytic test reactions for the evaluation of hierarchical zeolites. , 2016, Chemical Society reviews.

[32]  K. Lillerud,et al.  The formation and degradation of active species during methanol conversion over protonated zeotype catalysts. , 2015, Chemical Society reviews.

[33]  B. M. Weckhuysen,et al.  Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis , 2015, Chemical Society reviews.

[34]  B. Weckhuysen,et al.  Recent advances in zeolite chemistry and catalysis. , 2015, Chemical Society reviews.

[35]  F. Wei,et al.  Increasing para-Xylene Selectivity in Making Aromatics from Methanol with a Surface-Modified Zn/P/ZSM-5 Catalyst , 2015 .

[36]  Abdullah M. Asiri,et al.  Influence of the Reaction Temperature on the Nature of the Active and Deactivating Species During Methanol-to-Olefins Conversion over H-SAPO-34 , 2015, ACS catalysis.

[37]  Jianguo Wang,et al.  Influence of preparation method on the performance of Zn-containing HZSM-5 catalysts in methanol-to-aromatics , 2014 .

[38]  A. Veen,et al.  On reaction pathways in the conversion of methanol to hydrocarbons on HZSM-5 , 2014 .

[39]  A. Veen,et al.  On the impact of co-feeding aromatics and olefins for the methanol-to-olefins reaction on HZSM-5 , 2014 .

[40]  Junming Sun,et al.  Recent Advances in Catalytic Conversion of Ethanol to Chemicals , 2014 .

[41]  Aditya Bhan,et al.  Mechanism of the Catalytic Conversion of Methanol to Hydrocarbons , 2013 .

[42]  K. Lillerud,et al.  Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity. , 2012, Angewandte Chemie.

[43]  A. Bhan,et al.  Tuning the selectivity of methanol-to-hydrocarbons conversion on H-ZSM-5 by co-processing olefin or aromatic compounds , 2012 .

[44]  Silvia Bordiga,et al.  Conversion of methanol over 10-ring zeolites with differing volumes at channel intersections: comparison of TNU-9, IM-5, ZSM-11 and ZSM-5. , 2011, Physical chemistry chemical physics : PCCP.

[45]  M. Sierka,et al.  Effect of Al−Si−Al and Al−Si−Si−Al Pairs in the ZSM-5 Zeolite Framework on the 27Al NMR Spectra. A Combined High-Resolution 27Al NMR and DFT/MM Study , 2009 .

[46]  Unni Olsbye,et al.  Space- and time-resolved in-situ spectroscopy on the coke formation in molecular sieves: methanol-to-olefin conversion over H-ZSM-5 and H-SAPO-34. , 2008, Chemistry.

[47]  D. McCann,et al.  A complete catalytic cycle for supramolecular methanol-to-olefins conversion by linking theory with experiment. , 2008, Angewandte Chemie.

[48]  G. Spoto,et al.  Effect of aluminium distribution in the framework of ZSM-5 on hydrocarbon transformation. Cracking of 1-butene , 2008 .

[49]  Joachim Sauer,et al.  Aluminum siting in silicon-rich zeolite frameworks: a combined high-resolution (27)Al NMR spectroscopy and quantum mechanics / molecular mechanics study of ZSM-5. , 2007, Angewandte Chemie.

[50]  R. A. Santen,et al.  Activation of light alkanes over zinc species stabilized in ZSM-5 zeolite : A comprehensive DFT study , 2007 .

[51]  K. Lillerud,et al.  Conversion of methanol into hydrocarbons over zeolite H-ZSM-5: ethene formation is mechanistically separated from the formation of higher alkenes. , 2006, Journal of the American Chemical Society.

[52]  J. Bokhoven,et al.  Generation and Characterization of Well-Defined Zn2+ Lewis Acid Sites in Ion Exchanged Zeolite BEA , 2004 .

[53]  B. Wichterlová,et al.  Co2+ ions as probes of Al distribution in the framework of zeolites. ZSM-5 study , 2002 .

[54]  S. Hong,et al.  Direct evidence for the nonrandom nature of Al substitution in zeolite ZSM-5: an investigation by (27)Al MAS and MQ MAS NMR. , 2002, Angewandte Chemie.

[55]  E. Iglesia,et al.  Structure and Density of Active Zn Species in Zn/H-ZSM5 Propane Aromatization Catalysts☆ , 1998 .

[56]  Avelino Corma,et al.  Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions , 1995 .

[57]  A. Corma,et al.  Zeolites and Zeotypes as catalysts , 1995 .

[58]  F. Bandermann,et al.  Conversion of ethanol over zeolite H‐ZSM‐5 , 1994 .

[59]  Ivar M. Dahl,et al.  On the reaction mechanism for propene formation in the MTO reaction over SAPO-34 , 1993 .