Superdense Coding with GHZ and Quantum Key Distribution with W in the ZX-calculus

Quantum entanglement is a key resource in many quantum protocols, such as quantum teleportation and quantum cryptography. Yet entanglement makes protocols presented in Dirac notation difficult to verify. This is why Coecke and Duncan have introduced a diagrammatic language for quantum protocols, called the ZX-calculus. This diagrammatic notation is both intuitive and formally rigorous. It is a simple, graphical, high level language that emphasises the composition of systems and naturally captures the essentials of quantum mechanics. In the author's MSc thesis it has been shown for over 25 quantum protocols that the ZX-calculus provides a relatively easy and more intuitive presentation. Moreover, the author embarked on the task to apply categorical quantum mechanics on quantum security; earlier works did not touch anything but Bennett and Brassard's quantum key distribution protocol, BB84. Superdense coding with the Greenberger-Horne-Zeilinger state and quantum key distribution with the W-state are presented in the ZX-calculus in this paper.

[1]  V. N. Gorbachev,et al.  Teleportation of entangled states and dense coding using a multiparticle quantum channel , 2000 .

[2]  Bill Edwards,et al.  Three qubit entanglement within graphical Z/X-calculus , 2011, HPC.

[3]  Chuan Wang,et al.  Multi-step quantum secure direct communication using multi-particle Green–Horne–Zeilinger state , 2005 .

[4]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[5]  Mitsugu Iwamoto,et al.  Quantum secret sharing schemes and reversibility of quantum operations , 2005 .

[6]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[7]  Samson Abramsky,et al.  A categorical semantics of quantum protocols , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[8]  P. Wilcox,et al.  AIP Conference Proceedings , 2012 .

[9]  Weinfurter,et al.  Quantum cryptography with entangled photons , 1999, Physical review letters.

[10]  Peter Selinger,et al.  Dagger Compact Closed Categories and Completely Positive Maps: (Extended Abstract) , 2007, QPL.

[12]  A. Zeilinger,et al.  Quantum computing with controlled-NOT and few qubits , 1997, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[13]  Anne Hillebrand,et al.  Quantum Protocols involving Multiparticle Entanglement and their Representations in the zx-calculus. , 2011 .

[14]  Xiongfeng Ma,et al.  Decoy state quantum key distribution. , 2004, Physical review letters.

[15]  Fuguo Deng,et al.  Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs (4 pages) , 2005, quant-ph/0504158.

[16]  Sudhir Kumar Singh,et al.  Generalized quantum secret sharing , 2003, quant-ph/0307200.

[17]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[18]  Charles H. Bennett,et al.  WITHDRAWN: Quantum cryptography: Public key distribution and coin tossing , 2011 .

[19]  A. Joyal,et al.  The geometry of tensor calculus, I , 1991 .

[20]  Inbo Kim,et al.  Quantum Secure Communication via a W State , 2005 .

[21]  Guillaume Burel Embedding deduction modulo into a prover , 2010, CSL 2010.

[22]  Sellami Ali,et al.  DECOY STATE QUANTUM KEY DISTRIBUTION , 2010 .

[23]  Hideki Imai,et al.  A Quantum Information Theoretical Model for Quantum Secret Sharing Schemes , 2003 .

[24]  Charles H. Bennett,et al.  Quantum cryptography using any two nonorthogonal states. , 1992, Physical review letters.

[25]  B. Coecke Kindergarten Quantum Mechanics: Lecture Notes , 2006 .

[26]  R. Cleve,et al.  HOW TO SHARE A QUANTUM SECRET , 1999, quant-ph/9901025.

[27]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[28]  Bob Coecke,et al.  Interacting quantum observables: categorical algebra and diagrammatics , 2009, ArXiv.

[29]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[30]  Simon Perdrix,et al.  Environment and Classical Channels in Categorical Quantum Mechanics , 2010, CSL.

[31]  Aleks Kissinger,et al.  Exploring a Quantum Theory with Graph Rewriting and Computer Algebra , 2009, Calculemus/MKM.

[32]  Jose L. Cereceda Quantum dense coding using three qubits , 2001 .

[33]  B. Coecke Quantum picturalism , 2009, 0908.1787.

[34]  Charles H. Bennett,et al.  Quantum cryptography without Bell's theorem. , 1992, Physical review letters.

[35]  Hideki Imai,et al.  Improving quantum secret-sharing schemes , 2001 .