Improved Cyclohexanone Vapor Detection via Gravimetric Sensing

Functionalized gravimetric sensors are a promising path to small, versatile, real-time vapor sensors for volatile organic compounds. Many of these compounds can be dangerous to human health, but their nonreactive nature makes them notoriously difficult to sense. Unlike bulk acoustic resonators, chemiresistive devices have been investigated extensively and many researchers have used innovative synthesis strategies to functionalize these devices. In this work, we demonstrate how modifying a particular sensitizer for use with a bulk acoustic resonator significantly improves the sensitivity of the device (5 ppm vs. 1.11 ppm). Additionally, readout circuitry is described to avoid some problems that typically plague gravimetric sensors while simplifying the overall system. These strategies create a playbook for simple, fast, and sensitive systems for sensing volatile organic compounds, while also demonstrating the lowest limit of detection for cyclohexanone outside of gas chromatography/mass spectrometery in the literature. [2020-0053]

[1]  W. E. Newell,et al.  Face-mounted piezoelectric resonators , 1965 .

[2]  E. F. Meyer,et al.  High-precision vapor-pressure data for eight organic compounds , 1973 .

[3]  Thomas F. Jenkins,et al.  Detection of cyclohexanone in the atmosphere above emplaced antitank mines , 1974 .

[4]  Stephen K. Brown,et al.  Concentrations of Volatile Organic Compounds in Indoor Air – A Review , 1994 .

[5]  Kenneth Meade Lakin,et al.  Solidly mounted resonators and filters , 1995, 1995 IEEE Ultrasonics Symposium. Proceedings. An International Symposium.

[6]  L. A. Currie,et al.  Nomenclature in evaluation of analytical methods including detection and quantification capabilities (IUPAC Recommendations 1995) , 1995 .

[7]  C. N. Hewitt,et al.  A global model of natural volatile organic compound emissions , 1995 .

[8]  A. Hierlemann,et al.  Performances of mass-sensitive devices for gas sensing:  thickness shear mode and surface acoustic wave transducers. , 1996, Analytical chemistry.

[9]  J. Bustillo,et al.  Surface micromachining for microelectromechanical systems , 1998, Proc. IEEE.

[10]  Antonio J. Ricco,et al.  NEW ORGANIC MATERIALS SUITABLE FOR USE IN CHEMICAL SENSOR ARRAYS , 1998 .

[11]  Gordon C. Osbourn,et al.  Surface Acoustic Wave Chemical Sensor Arrays: New Chemically Sensitive Interfaces Combined with Novel Cluster Analysis to Detect Volatile Organic Compounds and Mixtures , 1998 .

[12]  Lloyd A. Currie,et al.  Nomenclature in evaluation of analytical methods including detection and quantification capabilities1: (IUPAC Recommendations 1995) , 1999 .

[13]  R. Howe,et al.  An integrated CMOS micromechanical resonator high-Q oscillator , 1999, IEEE J. Solid State Circuits.

[14]  J. Kesselmeier,et al.  Biogenic Volatile Organic Compounds (VOC): An Overview on Emission, Physiology and Ecology , 1999 .

[15]  Fritz Vögtle,et al.  Highly selective sensor materials for discriminating carbonyl compounds in the gas phase using quartz microbalances , 1999 .

[16]  M. Penza,et al.  Relative humidity sensing by PVA-coated dual resonator SAW oscillator , 2000 .

[17]  J. D. Larson,et al.  Modified Butterworth-Van Dyke circuit for FBAR resonators and automated measurement system , 2000, 2000 IEEE Ultrasonics Symposium. Proceedings. An International Symposium (Cat. No.00CH37121).

[18]  F. Schreiber Structure and growth of self-assembling monolayers , 2000 .

[19]  J. Grate Acoustic wave microsensor arrays for vapor sensing. , 2000, Chemical reviews.

[20]  N S Lewis,et al.  An investigation of the concentration dependence and response to analyte mixtures of carbon black/insulating organic polymer composite vapor detectors. , 2000, Analytical chemistry.

[21]  Kenneth Meade Lakin,et al.  Temperature compensated bulk acoustic thin film resonators , 2000, 2000 IEEE Ultrasonics Symposium. Proceedings. An International Symposium (Cat. No.00CH37121).

[22]  R Chung,et al.  Rational materials design of sorbent coatings for explosives: applications with chemical sensors. , 2001, Talanta.

[23]  A. Rappe,et al.  n -alkyl thiol head-group interactions with the Au(111) surface , 2000, cond-mat/0008323.

[24]  R. C. Hughes,et al.  Review of Chemical Sensors for In-Situ Monitoring of Volatile Contaminants , 2001 .

[25]  Guntae Kim,et al.  Modeling and simulation of the thin film bulk acoustic resonator , 2002, Proceedings of the 2002 IEEE International Frequency Control Symposium and PDA Exhibition (Cat. No.02CH37234).

[26]  Kazuo Ishikawa,et al.  Fabrication of Piezoelectric Thin Film Resonators with Acoustic Quarter-Wave Multilayers , 2002 .

[27]  Brian Otis,et al.  A 300µmW 1.9GHz CMOS oscillator utilizing micromachined resonators , 2002, Proceedings of the 28th European Solid-State Circuits Conference.

[28]  J. Haugen,et al.  Standardization methods for handling instrument related signal shift in gas-sensor array measurement data , 2002 .

[29]  J. Rabaey,et al.  A 300-μW 1.9-GHz CMOS oscillator utilizing micromachined resonators , 2003, IEEE J. Solid State Circuits.

[30]  K. Nakamura,et al.  Temperature characteristics of solidly mounted piezoelectric thin film resonators , 2003, IEEE Symposium on Ultrasonics, 2003.

[31]  M. Meyyappan,et al.  Carbon Nanotube Sensors for Gas and Organic Vapor Detection , 2003 .

[32]  M. Agah,et al.  High-Speed MEMS-Based Gas Chromatography , 2004, Journal of Microelectromechanical Systems.

[33]  W. Miekisch,et al.  Diagnostic potential of breath analysis--focus on volatile organic compounds. , 2004, Clinica chimica acta; international journal of clinical chemistry.

[34]  R. Aigner,et al.  Optimization of acoustic mirrors for solidly mounted BAW resonators , 2005, IEEE Ultrasonics Symposium, 2005..

[35]  G. Whitesides,et al.  Self-assembled monolayers of thiolates on metals as a form of nanotechnology. , 2005, Chemical reviews.

[36]  K.B. Ostman,et al.  Novel VCO Architecture Using Series Above-IC FBAR and Parallel LC Resonance , 2006, IEEE Journal of Solid-State Circuits.

[37]  Seung-Chul Ha,et al.  Gas sensor measurement system capable of sampling volatile organic compounds (VOCs) in wide concentration range , 2007 .

[38]  Songlin Feng,et al.  Dual-SAM functionalization on integrated cantilevers for specific trace-explosive sensing and non-specific adsorption suppression , 2007 .

[39]  Ventsislav Yantchev,et al.  Mass sensitivity of multilayer thin film resonant BAW sensors , 2008 .

[40]  R. Hueting,et al.  Modelling of bulk acoustic wave resonators for microwave filters , 2008 .

[41]  G. Borghs,et al.  Stability of mixed PEO-thiol SAMs for biosensing applications. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[42]  Yu-Hsiang Hsu,et al.  RF sputtered piezoelectric zinc oxide thin film for transducer applications , 2008 .

[43]  Mamta Khaneja,et al.  Development of handheld SAW vapor sensors for explosives and CW agents , 2009 .

[44]  Cunjiang Yu,et al.  Experiment and theoretical analysis of relative humidity sensor based on film bulk acoustic-wave resonator , 2010 .

[45]  Andrei Vorobiev,et al.  Effect of interface roughness on acoustic loss in tunable thin film bulk acoustic wave resonators , 2011 .

[46]  Robert A. York,et al.  Improvement of barium strontium titanate solidly mounted resonator quality factor by reduction in electrode surface roughness , 2011 .

[47]  G. Piazza,et al.  Ss-DNA functionalized array of ALN Contour-Mode NEMS Resonant Sensors with single CMOS multiplexed oscillator for sub-ppb detection of volatile organic chemicals , 2011, 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems.

[48]  M. Roukes,et al.  Gas sensors based on gravimetric detection—A review , 2011 .

[49]  M. Liras,et al.  Transformation of the bromine end group into thiol in (Meth)acrylic polymers synthesized by atom transfer radical polymerization , 2011 .

[50]  S. El‐Safty,et al.  Meso- and Macroporous Co3O4 Nanorods for Effective VOC Gas Sensors , 2011 .

[51]  V. Mirsky,et al.  Artificial receptors for chemical sensors , 2011 .

[52]  K. L. Shepard,et al.  Integrated VOC vapor sensing on FBAR-CMOS array , 2012, 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS).

[53]  M. Johnston Thin-film Bulk Acoustic Resonators on Integrated Circuits for Physical Sensing Applications , 2012 .

[54]  Y. Weizmann,et al.  Sensory Arrays of Covalently Functionalized Single‐Walled Carbon Nanotubes for Explosive Detection , 2013 .

[55]  T. Swager,et al.  Robust cyclohexanone selective chemiresistors based on single-walled carbon nanotubes. , 2013, Analytical chemistry.

[56]  Joseph M. Azzarelli,et al.  Rapid prototyping of carbon-based chemiresistive gas sensors on paper , 2013, Proceedings of the National Academy of Sciences.

[57]  Timothy M Swager,et al.  Wireless gas detection with a smartphone via rf communication , 2014, Proceedings of the National Academy of Sciences.

[58]  Boris Brkić,et al.  Membrane Inlet Mass Spectrometry for Homeland Security and Forensic Applications , 2015, Journal of The American Society for Mass Spectrometry.

[59]  Hongbin Li,et al.  Quantifying thiol–gold interactions towards the efficient strength control , 2014, Nature Communications.

[60]  Bin Wang,et al.  Artificial sensing intelligence with silicon nanowires for ultraselective detection in the gas phase. , 2014, Nano letters.

[61]  Ye Chang,et al.  Detection of Volatile Organic Compounds Using Microfabricated Resonator Array Functionalized with Supramolecular Monolayers. , 2015, ACS applied materials & interfaces.

[62]  Daihua Zhang,et al.  Concentration-independent fingerprint library of volatile organic compounds based on gas-surface interactions by self-assembled monolayer functionalized film bulk acoustic resonator arrays , 2015, 2015 IEEE SENSORS.

[63]  Xincun Dou,et al.  Emerging and Future Possible Strategies for Enhancing 1D Inorganic Nanomaterials‐Based Electrical Sensors towards Explosives Vapors Detection , 2016 .

[64]  VOC detection using multimode E-nose composed of bulk acoustic wave resonator and silicon nanowire field effect transistor array , 2016, 2016 IEEE SENSORS.

[65]  Ye Chang,et al.  Detection of Volatile Organic Compounds by Self-assembled Monolayer Coated Sensor Array with Concentration-independent Fingerprints , 2016, Scientific Reports.

[66]  Kenneth L. Shepard,et al.  Monolithically Integrated CMOS-SMR Oscillator in 65 nm CMOS Using Custom MPW Die-Level Fabrication Process , 2017, Journal of Microelectromechanical Systems.

[67]  Marco R. Cavallari,et al.  A Hybrid Electronic Nose and Tongue for the Detection of Ketones: Improved Sensor Orthogonality Using Graphene Oxide-Based Detectors , 2017, IEEE Sensors Journal.

[68]  Marco R. Cavallari,et al.  CMOS integrated ZnO thin film bulk acoustic resonator with Si3N4 susceptor layer for improved IR sensitivity , 2017, 2017 75th Annual Device Research Conference (DRC).

[69]  Ta-Hsuan Ong,et al.  Use of Mass Spectrometric Vapor Analysis To Improve Canine Explosive Detection Efficiency. , 2017, Analytical chemistry.

[70]  Krishna C. Persaud,et al.  Towards bionic noses , 2017 .

[71]  Jacek Gębicki,et al.  Currently Commercially Available Chemical Sensors Employed for Detection of Volatile Organic Compounds in Outdoor and Indoor Air , 2017 .

[72]  E. S. Kim,et al.  Miniature Sensing System With FBAR-Based Oscillators and Frequency Shift Detector , 2018, IEEE Sensors Journal.

[73]  Weiqi Wang,et al.  Film bulk acoustic formaldehyde sensor with polyethyleneimine-modified single-wall carbon nanotubes as sensitive layer , 2018, Sensors and Actuators B: Chemical.

[74]  Wangshui Wei,et al.  Film bulk acoustic formaldehyde sensor with layer-by-layer assembled carbon nanotubes/polyethyleneimine multilayers , 2018 .

[75]  Kerstin Länge,et al.  Bulk and Surface Acoustic Wave Sensor Arrays for Multi-Analyte Detection: A Review , 2019, Sensors.

[76]  Jiuyan Li,et al.  Detection and discrimination of volatile organic compounds using a single film bulk acoustic wave resonator with temperature modulation as a multiparameter virtual sensor array. , 2019, ACS sensors.