Evolutionary algorithms and elliptical copulas applied to continuous optimization problems

Estimation of Distribution Algorithms (EDAs) constitutes a class of evolutionary algorithms that can extract and exploit knowledge acquired throughout the optimization process. The most critical step in the EDAs is the estimation of the joint probability distribution associated to the variables from the most promising solutions determined by the evaluation function. Recently, a new approach to EDAs has been developed, based on copula theory, to improve the estimation of the joint probability distribution function. However, most copula-based EDAs still present two major drawbacks: focus on copulas with constant parameters, and premature convergence. This paper presents a new copula-based estimation of distribution algorithm for numerical optimization problems, named EDA based on Multivariate Elliptical Copulas (EDA-MEC). This model uses multivariate copulas to estimate the probability distribution for generating a population of individuals. The EDA-MEC differs from other copula-based EDAs in several aspects: the copula parameter is dynamically estimated, using dependence measures; it uses a variation of the learned probability distribution to generate individuals that help to avoid premature convergence; and uses a heuristic to reinitialize the population as an additional technique to preserve the diversity of solutions. The paper shows, by means of a set of parametric tests, that this approach improves the overall performance of the optimization process when compared with other copula-based EDAs and with other efficient heuristics such as the Covariance Matrix Adaptation Evolution Strategy (CMA-ES).

[1]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[2]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[3]  David Naso,et al.  Compact Differential Evolution , 2011, IEEE Transactions on Evolutionary Computation.

[4]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[5]  E. Luciano,et al.  Copula methods in finance , 2004 .

[6]  Marta Soto,et al.  copulaedas: An R Package for Estimation of Distribution Algorithms Based on Copulas , 2012, ArXiv.

[7]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[8]  Giovanni Iacca,et al.  Compact Particle Swarm Optimization , 2013, Inf. Sci..

[9]  Vinicius Veloso de Melo,et al.  A CMA-ES-based 2-stage memetic framework for solving constrained optimization problems , 2014, 2014 IEEE Symposium on Foundations of Computational Intelligence (FOCI).

[10]  Jing J. Liang,et al.  Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization , 2005 .

[11]  Luca Maria Gambardella,et al.  Ant Algorithms for Discrete Optimization , 1999, Artificial Life.

[12]  Lixin Tang,et al.  A novel hybrid Differential Evolution-Estimation of Distribution Algorithm for dynamic optimization problem , 2013, 2013 IEEE Congress on Evolutionary Computation.

[13]  M. J. Reddy,et al.  Bivariate Flood Frequency Analysis of Upper Godavari River Flows Using Archimedean Copulas , 2012, Water Resources Management.

[14]  Fernando José Von Zuben,et al.  Online learning in estimation of distribution algorithms for dynamic environments , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[15]  Josef Schwarz,et al.  Multivariate Gaussian copula in Estimation of Distribution Algorithm with model migration , 2014, 2014 IEEE Symposium on Foundations of Computational Intelligence (FOCI).

[16]  Roberto Santana,et al.  Estimation of Distribution Algorithms with Kikuchi Approximations , 2005, Evolutionary Computation.

[17]  H. Joe Multivariate models and dependence concepts , 1998 .

[18]  S. Baluja,et al.  Using Optimal Dependency-Trees for Combinatorial Optimization: Learning the Structure of the Search Space , 1997 .

[19]  Fabio Caraffini,et al.  An analysis on separability for Memetic Computing automatic design , 2014, Inf. Sci..

[20]  Dirk Thierens,et al.  Advancing continuous IDEAs with mixture distributions and factorization selection metrics , 2001 .

[21]  Zbigniew Michalewicz,et al.  Genetic algorithms + data structures = evolution programs (2nd, extended ed.) , 1994 .

[22]  Kumara Sastry,et al.  Linkage Learning via Probabilistic Modeling in the Extended Compact Genetic Algorithm (ECGA) , 2006, Scalable Optimization via Probabilistic Modeling.

[23]  Dirk Thierens,et al.  Numerical Optimization with Real-Valued Estimation-of-Distribution Algorithms , 2006, Scalable Optimization via Probabilistic Modeling.

[24]  D.E. Goldberg,et al.  Classifier Systems and Genetic Algorithms , 1989, Artif. Intell..

[25]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[26]  El-Ghazali Talbi,et al.  Metaheuristics - From Design to Implementation , 2009 .

[27]  Edmund K. Burke,et al.  A Separability Prototype for Automatic Memes with Adaptive Operator Selection , 2014, 2014 IEEE Symposium on Foundations of Computational Intelligence (FOCI).

[28]  Martin Pelikan,et al.  Hierarchical Bayesian optimization algorithm: toward a new generation of evolutionary algorithms , 2010, SICE 2003 Annual Conference (IEEE Cat. No.03TH8734).

[29]  Shen Yin,et al.  Intelligent Particle Filter and Its Application to Fault Detection of Nonlinear System , 2015, IEEE Transactions on Industrial Electronics.

[30]  E. Cantu-Paz,et al.  The Gambler's Ruin Problem, Genetic Algorithms, and the Sizing of Populations , 1997, Evolutionary Computation.

[31]  Conor Ryan,et al.  On the diversity of diversity , 2007, 2007 IEEE Congress on Evolutionary Computation.

[32]  Marco Dorigo,et al.  Swarm intelligence: from natural to artificial systems , 1999 .

[33]  Shumeet Baluja,et al.  Using Optimal Dependency-Trees for Combinational Optimization , 1997, ICML.

[34]  Nikolaus Hansen,et al.  A restart CMA evolution strategy with increasing population size , 2005, 2005 IEEE Congress on Evolutionary Computation.

[35]  A. Frigessi,et al.  Pair-copula constructions of multiple dependence , 2009 .

[36]  Arturo Hernández Aguirre,et al.  Copula selection for graphical models in continuous Estimation of Distribution Algorithms , 2014, Comput. Stat..

[37]  H. Mühlenbein,et al.  From Recombination of Genes to the Estimation of Distributions I. Binary Parameters , 1996, PPSN.

[38]  D. Goldberg,et al.  BOA: the Bayesian optimization algorithm , 1999 .

[39]  Jose Miguel Puerta,et al.  Avoiding premature convergence in estimation of distribution algorithms , 2009, 2009 IEEE Congress on Evolutionary Computation.

[40]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[41]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[42]  A. A. Zhigli︠a︡vskiĭ,et al.  Stochastic Global Optimization , 2007 .

[43]  Dario Floreano,et al.  Memetic Viability Evolution for Constrained Optimization , 2016, IEEE Transactions on Evolutionary Computation.

[44]  Inwhee Joe,et al.  Energy-efficient resource allocation for heterogeneous cognitive radio network based on two-tier crossover genetic algorithm , 2016, Journal of Communications and Networks.

[45]  P. Embrechts,et al.  Risk Management: Correlation and Dependence in Risk Management: Properties and Pitfalls , 2002 .

[46]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[47]  A. Zhigljavsky Stochastic Global Optimization , 2008, International Encyclopedia of Statistical Science.

[48]  Anne Auger,et al.  Impacts of invariance in search: When CMA-ES and PSO face ill-conditioned and non-separable problems , 2011, Appl. Soft Comput..

[49]  Samir W. Mahfoud Niching methods for genetic algorithms , 1996 .

[50]  Dr. Zbigniew Michalewicz,et al.  How to Solve It: Modern Heuristics , 2004 .

[51]  Shumeet Baluja,et al.  A Method for Integrating Genetic Search Based Function Optimization and Competitive Learning , 1994 .

[52]  J. A. Lozano,et al.  Towards a New Evolutionary Computation: Advances on Estimation of Distribution Algorithms (Studies in Fuzziness and Soft Computing) , 2006 .

[53]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[54]  Martin Pelikan,et al.  An introduction and survey of estimation of distribution algorithms , 2011, Swarm Evol. Comput..

[55]  Martin Pelikan,et al.  Marginal Distributions in Evolutionary Algorithms , 2007 .

[56]  Pedro Larrañaga,et al.  Towards a New Evolutionary Computation - Advances in the Estimation of Distribution Algorithms , 2006, Towards a New Evolutionary Computation.

[57]  R. Nelsen An Introduction to Copulas (Springer Series in Statistics) , 2006 .

[58]  Paul A. Viola,et al.  MIMIC: Finding Optima by Estimating Probability Densities , 1996, NIPS.

[59]  J. A. Lozano,et al.  Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation , 2001 .

[60]  Pedro Larrañaga,et al.  Benefits of Data Clustering in Multimodal Function Optimization via EDAs , 2002, Estimation of Distribution Algorithms.

[61]  R. Nelsen An Introduction to Copulas , 1998 .