The Color Logarithmic Image Processing (CoLIP) Antagonist Space

The color logarithmic image processing (CoLIP) is a mathematical framework for the representation and processing of color images. It is psychophysically well justified since it is consistent with several human visual perception laws and characteristics. It is mathematically and computationally relevant since it allows to consider color images as vectors in an abstract linear space, contrary to the classical color spaces (e.g., RGB and \(L^*a^*b^*\)). The first purpose of this chapter is to present the mathematical fundamentals of the CoLIP together with its main psychophysical connections (Grasmann’s law, color matching functions, chromaticity diagram, and the Maxwell triangle). The second purpose is to present some basic image processing and analysis techniques for contrast enhancement (histogram equalization, dynamic range maximization, and toggle contrast calculation), white balance correction, color transfer, K-means clustering, and filtering. Most of them are applied on various original color images in a comparative way between CoLIP, RGB, and \(L^*a^*b^*\) color spaces.

[1]  L. E. Krueger Reconciling Fechner and Stevens: Toward a unified psychophysical law , 1989, Behavioral and Brain Sciences.

[2]  M. Jourlin,et al.  Logarithmic Image Processing for Color Images , 2011 .

[3]  Jean-Charles Pinoli,et al.  Image dynamic range enhancement and stabilization in the context of the logarithmic image processing model , 1995, Signal Process..

[4]  G. Svaetichin,et al.  Spectral response curves from single cones. , 1956, Acta physiologica Scandinavica. Supplementum.

[5]  V. Barnett The Ordering of Multivariate Data , 1976 .

[6]  Corneliu Florea,et al.  Logarithmic Model-Based Dynamic Range Enhancement of Hip X-Ray Images , 2007, ACIVS.

[7]  Guang Deng,et al.  A Generalized Logarithmic Image Processing Model Based on the Gigavision Sensor Model , 2012, IEEE Transactions on Image Processing.

[8]  M Fernandes,et al.  Improving focus measurements using logarithmic image processing , 2011, Journal of microscopy.

[9]  Jean-Charles Pinoli,et al.  The Logarithmic Image Processing Model: Connections with Human Brightness Perception and Contrast Estimators , 1997, Journal of Mathematical Imaging and Vision.

[10]  J. J. Vos,et al.  On the derivation of the foveal receptor primaries. , 1971, Vision research.

[11]  Hermann Grassmann,et al.  Zur Theorie der Farbenmischung , 1853 .

[12]  Shmuel Peleg,et al.  Inversion of picture operators , 1987, Pattern Recognit. Lett..

[13]  William J. Emery,et al.  Classification of Very High Spatial Resolution Imagery Using Mathematical Morphology and Support Vector Machines , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[14]  Varghese Paul,et al.  A novel approach to fabric defect detection using digital image processing , 2011, 2011 International Conference on Signal Processing, Communication, Computing and Networking Technologies.

[15]  Gustav Theodor Fechner,et al.  Elements of psychophysics , 1966 .

[16]  Thomas Young,et al.  II. The Bakerian Lecture. On the theory of light and colours , 1802, Philosophical Transactions of the Royal Society of London.

[17]  Ewald Hering Outlines of a theory of the light sense , 1964 .

[18]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[19]  Jean-Charles Pinoli Mathematical Foundations of Image Processing and Analysis 1: Pinoli/Mathematical Foundations of Image Processing and Analysis 1 , 2014 .

[20]  A. Oppenheim,et al.  Nonlinear filtering of multiplied and convolved signals , 1968 .

[21]  Hélène Gouinaud Traitement logarithmique d'images couleur , 2013 .

[22]  Sanjit K. Mitra,et al.  Nonlinear unsharp masking methods for image contrast enhancement , 1996, J. Electronic Imaging.

[23]  Stanley R Sternberg,et al.  Grayscale morphology , 1986 .

[24]  G. Matheron Random Sets and Integral Geometry , 1976 .

[25]  Nicolas Passat,et al.  3D segmentation of coronary arteries based on advanced mathematical morphology techniques , 2010, Comput. Medical Imaging Graph..

[26]  Jean-Charles Pinoli,et al.  Color correction in the framework of Color Logarithmic Image Processing , 2011, 2011 7th International Symposium on Image and Signal Processing and Analysis (ISPA).

[27]  J. Mollon,et al.  The Spectral Sensitivities of the Middle- and Long-Wavelength Cones: An Extension of the Two-Colour Threshold Technique of W S Stiles , 1986, Perception.

[28]  Víctor González-Castro,et al.  Color Adaptive Neighborhood Mathematical Morphology and its application to pixel-level classification , 2014, Pattern Recognit. Lett..

[29]  Sos S. Agaian,et al.  Human Visual System-Based Image Enhancement and Logarithmic Contrast Measure , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[30]  Pierre Soille,et al.  Morphological Image Analysis: Principles and Applications , 2003 .

[31]  Manpreet Kaur,et al.  Survey of Contrast Enhancement Techniques based on Histogram Equalization , 2011 .

[32]  Ilkay Ulusoy,et al.  Automatic segmentation of VHR images using type information of local structures acquired by mathematical morphology , 2011, Pattern Recognit. Lett..

[33]  C. Oleari,et al.  Grassmann's laws and individual color‐matching functions for non‐spectral primaries evaluated by maximum saturation technique in foveal vision , 2008 .

[34]  Sébastien Lefèvre,et al.  A comparative study on multivariate mathematical morphology , 2007, Pattern Recognit..

[35]  Gaurav Sharma Digital Color Imaging Handbook , 2002 .

[36]  Laurent Navarro,et al.  The symmetric logarithmic image processing model , 2013, Digit. Signal Process..

[37]  Mark D. Fairchild,et al.  Color Appearance Models: Fairchild/Color Appearance Models , 2013 .

[38]  Corneliu Florea,et al.  Parametric logarithmic type image processing for contrast based auto-focus in extreme lighting conditions , 2013, Int. J. Appl. Math. Comput. Sci..

[39]  E. Kreyszig Introductory Functional Analysis With Applications , 1978 .

[40]  Jesús Angulo,et al.  Morphological colour operators in totally ordered lattices based on distances: Application to image filtering, enhancement and analysis , 2007, Comput. Vis. Image Underst..

[41]  J. Pinoli Contribution a la modelisation, au traitement et a l'analyse d'image , 1987 .

[42]  Michael H. Brill,et al.  Color appearance models , 1998 .