A Pseudo Random Numbers Generator Based on Chaotic Iterations: Application to Watermarking

In this paper, a new chaotic pseudo-random number generator (PRNG) is proposed. It combines the well-known ISAAC and XORshift generators with chaotic iterations. This PRNG possesses important properties of topological chaos and can successfully pass NIST and TestU01 batteries of tests. This makes our generator suitable for information security applications like cryptography. As an illustrative example, an application in the field of watermarking is presented.

[1]  Francesca Perla,et al.  On parallel asset-liability management in life insurance: a forward risk-neutral approach , 2010, Parallel Comput..

[2]  Soo-Chang Pei,et al.  Evidence of the correlation between positive Lyapunov exponents and good chaotic random number sequences , 2004, Comput. Phys. Commun..

[3]  Christophe Guyeux,et al.  A new chaos-based watermarking algorithm , 2010, 2010 International Conference on Security and Cryptography (SECRYPT).

[4]  Jacques M. Bahi,et al.  A Novel Pseudo-random Number Generator Based on Discrete Chaotic Iterations , 2009, 2009 First International Conference on Evolving Internet.

[5]  I. D. Hill,et al.  Generating good pseudo-random numbers , 2006, Comput. Stat. Data Anal..

[6]  Verónica Fernández Mármol,et al.  On the inadequacy of the logistic map for cryptographic applications , 2008, 0805.4355.

[7]  Coskun Bayrak,et al.  A new hybrid nonlinear congruential number generator based on higher functional power of logistic maps , 2009 .

[8]  M. Bernhard Introduction to Chaotic Dynamical Systems , 1992 .

[9]  L. Kocarev Chaos-based cryptography: a brief overview , 2001 .

[10]  François Cayre,et al.  Kerckhoffs-Based Embedding Security Classes for WOA Data Hiding , 2008, IEEE Transactions on Information Forensics and Security.

[11]  Elaine B. Barker,et al.  A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications , 2000 .

[12]  Jason Wittenberg,et al.  Clarify: Software for Interpreting and Presenting Statistical Results , 2003 .

[13]  Xiao-jian Tian,et al.  Pseudo-random sequence generator based on the generalized Henon map , 2008 .

[14]  Jacques M. Bahi,et al.  Chaotic iterations and topological chaos , 2008 .

[15]  François Robert,et al.  Discrete iterations - a metric study , 1986, Springer series in computational mathematics.

[16]  Gonzalo Alvarez,et al.  On the inadequacy of the logistic map for cryptographic applications , 2008 .

[17]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[18]  Christophe Guyeux,et al.  A more secure information hiding scheme than spread-spectrum obtained by chaos-security , 2010 .

[19]  Elaine B. Barker,et al.  A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications , 2000 .