Advanced plasma (propulsion) concepts at IRS

Abstract Several advanced plasma propulsion designs have been developed and characterized at IRS in the past years. Among them are the hybrid thruster TIHTUS, the steady state applied-field thrusters AF-MPD ZT1 and ZT2 and advanced iMPD designs. These concepts show promising potential for future missions. The paper will discuss the designs and their operational features. In addition, more advanced systems are under investigation, among others fusion systems and magnetic sail systems. These systems are not likely to see in-flight testing within the next years, but they offer opportunities for investigation potentially applicable to terrestrial designs.

[2]  Roland Gabrielli,et al.  Generalized Lawson criterion for magnetic fusion applications in space , 2012 .

[3]  D. Petkow,et al.  High-enthalpy, water-cooled and thin-walled ICP sources characterization and MHD optimization , 2008, Journal of Plasma Physics.

[4]  Robert M. Winglee,et al.  Mini-Magnetospheric Plasma Propulsion: Tapping the energy of the solar wind for spacecraft propulsion , 2000 .

[5]  Craig Hamilton Williams An Analytic Approximation to Very High Specific Impulse and Specific Power Interplanetary Space Mission Analysis , 1995 .

[6]  H. Koizumi,et al.  Effect of Solute Mixing in the Liquid Propellant of a Pulsed Plasma Thruster , 2006 .

[7]  J. Slough,et al.  Large-Scale Mini-Magnetosphere Plasma Propulsion (M2P2) Experiments , 2001 .

[8]  F. Romanelli,et al.  Assessment of Open Magnetic Fusion for Space Propulsion , 2006 .

[9]  G. Herdrich,et al.  A porous flow control element for pulsed plasma thrusters , 2012 .

[10]  N. Holtkamp,et al.  An overview of the ITER project , 2007 .

[11]  Ikkoh Funaki,et al.  Research Status of Sail Propulsion Using the Solar Wind , 2008 .

[12]  Terry Kammash Fusion energy in space propulsion , 1995 .

[13]  S. Fasoulas,et al.  Assessment of a Numerical Approach Suitable for the M2P2 Problem , 2011 .

[14]  Hiroyuki Koizumi,et al.  Performance Study on Liquid Propellant Pulsed Plasma Thruster , 2003 .

[15]  Pavlos Mikellides,et al.  Modeling of late-time ablation in teflon pulsed plasma thrusters , 1996 .

[16]  Monika Auweter-Kurtz,et al.  Numerical Simulations and Accompanying Experimental Investigations of Magnetoplasmadynamic Thrusters with Coaxial Applied Magnetic Field , 2009 .

[17]  Carsten A Scharlemann Investigation of thrust mechanisms in a water fed pulsed plasma thruster , 2003 .

[18]  Monika Auweter-Kurtz,et al.  TIHTUS Thrust Measurement with a Baffle Plate , 2007 .

[19]  Roland Gabrielli,et al.  Comparative Investigation of Fusion Reactions for Space Propulsion Applications , 2009 .

[20]  H. Böhrk,et al.  Velocity and total pressure measurements in the two-stage hybrid thruster tihtus , 2009 .

[21]  Peter A. Delamere,et al.  Fundamentals of the Plasma Sail Concept: Magnetohydrodynamic and Kinetic Studies , 2005 .

[22]  George H. Miley,et al.  Discharge characteristics of the spherical inertial electrostatic confinement (IEC) device , 1996 .

[23]  Hannah Böhrk Zur induktiven Nachheizung einer Überschallwasserstoffströmung , 2009 .

[24]  J. Reece Roth,et al.  Introduction to Fusion Energy , 1986 .

[25]  Nicholas A. Schmiegel FalconSAT-3 and the Space Environment , 2010 .

[26]  K. Nanbu,et al.  Probability theory of electron-molecule, ion-molecule, molecule-molecule, and Coulomb collisions for particle modeling of materials processing plasmas and cases , 2000 .

[27]  Hiroyuki Koizumi,et al.  Design and performance of liquid propellant pulsed plasma thruster , 2004 .