Quantum-chemical study of the Fukui function as a reactivity index: probing the acidity of bridging hydroxyls in zeolite-type model systems

[1]  J. Simons,et al.  Ab initio electronic structure of anions , 1987 .

[2]  Weitao Yang,et al.  The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines. , 1986, Journal of the American Chemical Society.

[3]  L. Radom,et al.  The evaluation of molecular electron affinities , 1986 .

[4]  P. Geerlings,et al.  Interaction of surface hydroxyls with adsorbed molecules. A quantum-chemical study , 1984 .

[5]  Robert G. Parr,et al.  Density functional approach to the frontier-electron theory of chemical reactivity , 1984 .

[6]  Timothy Clark,et al.  Efficient diffuse function‐augmented basis sets for anion calculations. III. The 3‐21+G basis set for first‐row elements, Li–F , 1983 .

[7]  M. Paddon-Row,et al.  Geometrics of the radical anions of ethylene, fluoroethylene, 1,1-difluoroethylene, and tetrafluoroethylene , 1982 .

[8]  L. Radom,et al.  A theoretical approach to the Birch reduction. Structures and stabilities of the radical anions of substituted benzenes , 1980 .

[9]  Michael J. Frisch,et al.  Contribution of triple substitutions to the electron correlation energy in fourth order perturbation theory , 1980 .

[10]  L. Radom,et al.  Ab initio study of the benzene radical anion , 1978 .

[11]  S. Chu,et al.  Potential surface distortion and orbital reorganization upon change of electronic state. Formaldehyde , 1975 .

[12]  S. Chu,et al.  Near‐Hartree‐Fock assessment of reorganization effects in ionic states of acetylene , 1974 .

[13]  D. Neumann,et al.  Energy curves of CO−2 , 1972 .

[14]  J. Pople,et al.  Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules , 1972 .

[15]  G. Segal,et al.  Theoretical Interpretation of the Optical and Electron Scattering Spectra of H2O , 1971 .

[16]  J. Pople,et al.  Self‐Consistent Molecular Orbital Methods. IV. Use of Gaussian Expansions of Slater‐Type Orbitals. Extension to Second‐Row Molecules , 1970 .

[17]  J. Pople,et al.  Self‐Consistent Molecular‐Orbital Methods. I. Use of Gaussian Expansions of Slater‐Type Atomic Orbitals , 1969 .

[18]  L. Bartell,et al.  Electron‐Diffraction Study of Ammonia and Deuteroammonia , 1968 .

[19]  R. L. Kuczkowski,et al.  Microwave Spectrum, Structure, and Dipole Moment of ``Cis''‐N2F2 , 1963 .

[20]  Takeshi Oka,et al.  Millimeter Wave Spectrum of Formaldehyde , 1963 .

[21]  T. L. Brown Infrared Intensities And Molecular Structure , 1958 .

[22]  R. S. Mulliken Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I , 1955 .

[23]  R. K. Nesbet,et al.  Self‐Consistent Orbitals for Radicals , 1954 .

[24]  Clemens C. J. Roothaan,et al.  New Developments in Molecular Orbital Theory , 1951 .

[25]  G. Alagona,et al.  Molecular spectroscopy, electronic structure and intramolecular interactions , 1991 .

[26]  P. Geerlings,et al.  Influence of the overall composition on zeolite properties .2. framework hydroxyls - a quantum chemical study , 1985 .

[27]  P. Geerlings,et al.  Influence of the overall composition on zeolite properties. 1. The framework: an infrared spectroscopic and quantum chemical study , 1985 .

[28]  J. Sauer,et al.  Bridging and terminal hydroxyls. A structural chemical and quantum chemical discussion , 1984 .