Decomposition into pairs-of-pants for complex algebraic hypersurfaces
暂无分享,去创建一个
[1] Wei-Dong Ruan. Newton polygon and string diagram , 2000, math/0011012.
[2] Joe Harris,et al. Real algebraic curves , 1981 .
[3] Mikael Passare,et al. Amoebas, Monge-Ampère measures, and triangulations of the Newton polytope. , 2004 .
[4] A. G. Kouchnirenko. Polyèdres de Newton et nombres de Milnor , 1976 .
[5] Askold Khovanskii,et al. Newton polyhedra and toroidal varieties , 1977 .
[6] G. Mikhalkin. Real algebraic curves, the moment map and amoebas , 2000 .
[7] Michael Atiyah. Angular momentum, convex Polyhedra and Algebraic Geometry , 1983 .
[8] M. J. D. L. Puente,et al. Real plane algebraic curves , 2002 .
[9] M. Kapranov,et al. A characterization ofA-discriminantal hypersurfaces in terms of the logarithmic Gauss map , 1991 .
[10] V. P. Maslov,et al. On a new superposition principle for optimization problem , 1986 .
[11] I. M. Gelʹfand,et al. Discriminants, Resultants, and Multidimensional Determinants , 1994 .
[12] Mirror symmetry is T duality , 1996, hep-th/9606040.
[13] Mikael Passare,et al. Laurent determinants and arrangements of hyperplane amoebas , 2000 .
[14] Oleg Viro,et al. Dequantization of Real Algebraic Geometry on Logarithmic Paper , 2000, math/0005163.
[15] Torus Fibrations of Calabi-Yau Hypersurfaces in Toric Varieties and Mirror Symmetry , 1998, math/9806091.
[16] Bernd Sturmfels. Viro's theorem for complete intersections , 1994 .