Bio-inspired multi-robot systems

Abstract In this chapter, we discuss team coordination in multi-robot systems inspired by the behavior of social insets such as ants and honeybees. Specifically, we study the application instances of ant-inspired robot coverage and bee-inspired robot foraging and pheromone signaling mechanisms and introduce some of our bio-inspired algorithms to deal with these problems. By robot coverage, we refer to the problem of deploying a robotic swarm in the environment with the task of maximizing the sensor coverage of the environment, and by robot foraging we refer to the problem of exploring the environment in search of food or provisions.

[1]  Israel A. Wagner,et al.  Distributed covering by ant-robots using evaporating traces , 1999, IEEE Trans. Robotics Autom..

[2]  Daisuke Kurabayashi,et al.  Artificial pheromone system using RFID for navigation of autonomous robots , 2007 .

[3]  Dervis Karaboga,et al.  A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm , 2007, J. Glob. Optim..

[4]  Douglas W. Gage,et al.  Command Control for Many-Robot Systems , 1992 .

[5]  Mac Schwager,et al.  Unifying geometric, probabilistic, and potential field approaches to multi-robot deployment , 2011, Int. J. Robotics Res..

[6]  Dervis Karaboga,et al.  Parameter Tuning for the Artificial Bee Colony Algorithm , 2009, ICCCI.

[7]  Thomas Stützle,et al.  Heterogeneous particle swarm optimizers , 2009, 2009 IEEE Congress on Evolutionary Computation.

[8]  Charles E. Perkins,et al.  Ad-hoc on-demand distance vector routing , 1999, Proceedings WMCSA'99. Second IEEE Workshop on Mobile Computing Systems and Applications.

[9]  Junichi Suzuki,et al.  MONSOON: A Coevolutionary Multiobjective Adaptation Framework for Dynamic Wireless Sensor Networks , 2008, Proceedings of the 41st Annual Hawaii International Conference on System Sciences (HICSS 2008).

[10]  Gerhard Weiss,et al.  A macroscopic model for multi-robot stigmergic coverage , 2013, AAMAS.

[11]  Eli Packer,et al.  Robust geometric computing and optimal visibility coverage , 2008 .

[12]  Alfred M. Bruckstein,et al.  Multi-a(ge)nt Graph Patrolling and Partitioning , 2009, 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology.

[13]  Ann Nowé,et al.  Bee Behaviour in Multi-agent Systems , 2007, Adaptive Agents and Multi-Agents Systems.

[14]  Gerhard Weiss,et al.  StaCo: Stackelberg-based Coverage Approach in Robotic Swarms , 2013 .

[15]  Gerhard Weiss,et al.  Stackelberg-based Coverage Approach in Nonconvex Environments , 2013, ECAL.

[16]  Sonia Martínez,et al.  Coverage control for mobile sensing networks , 2002, IEEE Transactions on Robotics and Automation.

[17]  Thomas Stützle,et al.  Ant colony optimization: artificial ants as a computational intelligence technique , 2006 .

[18]  Francesco Mondada,et al.  The e-puck, a Robot Designed for Education in Engineering , 2009 .

[19]  Elon Rimon,et al.  Competitive on-line coverage of grid environments by a mobile robot , 2003, Comput. Geom..

[20]  Subir Kumar Sarkar,et al.  A Light Weight Trust based Secure and Energy Efficient Clustering in Wireless Sensor Network: Honey Bee Mating Intelligence Approach☆ , 2013 .

[21]  Leandro Soares Indrusiak,et al.  Runtime optimisation in WSNs for load balancing using pheromone signalling , 2012, 2012 IEEE 3rd International Conference on Networked Embedded Systems for Every Application (NESEA).

[22]  D. Karaboga,et al.  On the performance of artificial bee colony (ABC) algorithm , 2008, Appl. Soft Comput..

[23]  Marco Dorigo,et al.  Optimization, Learning and Natural Algorithms , 1992 .

[24]  Erol Sahin,et al.  Swarm Robotics: From Sources of Inspiration to Domains of Application , 2004, Swarm Robotics.

[25]  Mac Schwager,et al.  Decentralized, Adaptive Coverage Control for Networked Robots , 2009, Int. J. Robotics Res..

[26]  Marco Dorigo,et al.  Ant colony optimization theory: A survey , 2005, Theor. Comput. Sci..

[27]  Gerhard Weiss,et al.  Theory of Cooperation in Complex Social Networks , 2014, AAAI.

[28]  Karl Tuyls,et al.  A bee algorithm for multi-agent systems: Recruitment and navigation combined , 2007 .

[29]  T. Collett,et al.  Local and global vectors in desert ant navigation , 1998, Nature.

[30]  Alessandro Saffiotti,et al.  Navigating by stigmergy: A realization on an RFID floor for minimalistic robots , 2009, 2009 IEEE International Conference on Robotics and Automation.

[31]  Thomas S Collett,et al.  The use of landmarks and panoramic context in the performance of local vectors by navigating honeybees. , 2002, The Journal of experimental biology.

[32]  Fumitoshi Matsuno,et al.  Communication using pheromone field for multiple robots , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[33]  Eliseo Ferrante,et al.  Swarmanoid: A Novel Concept for the Study of Heterogeneous Robotic Swarms , 2013, IEEE Robotics & Automation Magazine.

[34]  N. LEMMENS,et al.  Stigmergic Landmark Optimization , 2012, Adv. Complex Syst..

[35]  Gerhard Weiss,et al.  StiCo in action , 2013, AAMAS.

[36]  Leandro Soares Indrusiak,et al.  Search-Based Parameter Tuning on Application-Level Load Balancing for Distributed Embedded Systems , 2013, 2013 IEEE 10th International Conference on High Performance Computing and Communications & 2013 IEEE International Conference on Embedded and Ubiquitous Computing.

[37]  M. B. V. Roberts,et al.  Biology: A Functional Approach , 1987 .

[38]  Karl Tuyls,et al.  Collision avoidance under bounded localization uncertainty , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[39]  Kristina Lerman,et al.  A Review of Probabilistic Macroscopic Models for Swarm Robotic Systems , 2004, Swarm Robotics.

[40]  Alessandro Farinelli,et al.  Cooperative Exploration for USAR Robots with Indirect Communication , 2007 .

[41]  Nikolaus Correll,et al.  Collective Inspection of Regular Structures using a Swarm of Miniature Robots , 2004, ISER.

[42]  Roland Siegwart,et al.  Voronoi coverage of non-convex environments with a group of networked robots , 2010, 2010 IEEE International Conference on Robotics and Automation.

[43]  Marco Dorigo,et al.  Ant colony optimization , 2006, IEEE Computational Intelligence Magazine.

[44]  Olivier Buffet,et al.  Theoretical Study of Ant-based Algorithms for Multi-Agent Patrolling , 2008, ECAI.

[45]  Gerhard Weiss,et al.  Biologically inspired multi-robot foraging , 2014, AAMAS.

[46]  Gerhard Weiss,et al.  Evaluation of an Experimental Framework for Exploiting Vision in Swarm Robotics , 2013, ECAL.

[47]  Verena V. Hafner,et al.  LumiBots: making emergence graspable in a swarm of robots , 2010, Conference on Designing Interactive Systems.

[48]  Gerhard Weiss,et al.  A Multi-robot Coverage Approach Based on Stigmergic Communication , 2012, MATES.

[49]  Muddassar Farooq,et al.  BeeSensor: A Bee-Inspired Power Aware Routing Protocol for Wireless Sensor Networks , 2009, EvoWorkshops.

[50]  Olivier Buffet,et al.  Influence of different execution models on patrolling ant behaviors: from agents to robots , 2010, AAMAS.

[51]  Nasser A. El-Sherbeny,et al.  Vehicle routing with time windows: An overview of exact, heuristic and metaheuristic methods , 2010 .

[52]  Alfred M. Bruckstein,et al.  Autonomous Multi-agent Cycle Based Patrolling , 2010, ANTS Conference.

[53]  N. Lemmens Bee-inspired distributed optimization , 2011 .

[54]  Dario Floreano,et al.  Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies , 2008 .

[55]  Gerhard Weiss,et al.  Stigmergic coverage algorithm for multi-robot systems (demonstration) , 2012, AAMAS.

[56]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1985, Autonomous Robot Vehicles.

[57]  Francesco Bullo,et al.  SPATIALLY-DISTRIBUTED COVERAGE OPTIMIZATION AND CONTROL WITH LIMITED-RANGE INTERACTIONS , 2004 .

[58]  Alcherio Martinoli,et al.  Modeling Swarm Robotic Systems: a Case Study in Collaborative Distributed Manipulation , 2004, Int. J. Robotics Res..

[59]  Gerhard Weiss,et al.  Insect-Inspired Robot Coordination: Foraging and Coverage , 2014 .

[60]  Amir Pirzadeh,et al.  A unified solution to coverage and search in explored and unexplored terrains using indirect control , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[61]  Dervis Karaboga,et al.  Artificial bee colony algorithm , 2010, Scholarpedia.

[62]  Özgür B. Akan,et al.  A survey on bio-inspired networking , 2010, Comput. Networks.

[63]  Gerhard Weiss,et al.  Bee-inspired foraging in an embodied swarm , 2011, AAMAS.

[64]  Karl Tuyls,et al.  Multi-Robot Coverage: A Bee Pheromone Signalling Approach , 2014, ALIA.

[65]  Leandro Soares Indrusiak,et al.  Bioinspired Load Balancing in Large-Scale WSNs Using Pheromone Signalling , 2013, Int. J. Distributed Sens. Networks.

[66]  Yue Zhang,et al.  BeeHive: An Efficient Fault-Tolerant Routing Algorithm Inspired by Honey Bee Behavior , 2004, ANTS Workshop.

[67]  T. Collett,et al.  The use of visual landmarks by honeybees: Bees weight landmarks according to their distance from the goal , 1987, Journal of Comparative Physiology A.

[68]  Israel A. Wagner,et al.  A Distributed Ant Algorithm for\protect Efficiently Patrolling a Network , 2003, Algorithmica.

[69]  Y. Moreno,et al.  Epidemic outbreaks in complex heterogeneous networks , 2001, cond-mat/0107267.