Bootstrap current for the edge pedestal plasma in a diverted tokamak geometry

The edge bootstrap current plays a critical role in the equilibrium and stability of the steep edge pedestal plasma. The pedestal plasma has an unconventional and difficult neoclassical property, as compared with the core plasma. It has a narrow passing particle region in velocity space that can be easily modified or destroyed by Coulomb collisions. At the same time, the edge pedestal plasma has steep pressure and electrostatic potential gradients whose scale-lengths are comparable with the ion banana width, and includes a magnetic separatrix surface, across which the topological properties of the magnetic field and particle orbits change abruptly. A drift-kinetic particle code XGC0, equipped with a mass-momentum-energy conserving collision operator, is used to study the edge bootstrap current in a realistic diverted magnetic field geometry with a self-consistent radial electric field. When the edge electrons are in the weakly collisional banana regime, surprisingly, the present kinetic simulation confirm...

[1]  Bruce I. Cohen,et al.  A suitable boundary condition for bounded plasma simulation without sheath resolution , 1993 .

[2]  Choong-Seock Chang,et al.  Numerical study of neoclassical plasma pedestal in a tokamak geometry , 2004 .

[3]  O. Sauter,et al.  Neoclassical transport coefficients for general axisymmetric equilibria in the banana regime , 2000 .

[4]  C. D. Challis,et al.  Non-inductively driven currents in JET , 1989 .

[5]  Nagiza F. Samatova,et al.  Compressed ion temperature gradient turbulence in diverted tokamak edge , 2009 .

[6]  Marshall N. Rosenbluth,et al.  Numerical simulation of ion temperature gradient driven modes in the presence of ion-ion collisions , 1990 .

[7]  L. Lao,et al.  Edge localized modes and the pedestal: A model based on coupled peeling–ballooning modes , 2002 .

[8]  O. Sauter,et al.  Neoclassical conductivity and bootstrap current formulas for general axisymmetric equilibria and arbitrary collisionality regime , 1999 .

[9]  Choong-Seock Chang,et al.  Full-f gyrokinetic particle simulation of centrally heated global ITG turbulence from magnetic axis to edge pedestal top in a realistic tokamak geometry , 2009 .

[10]  R. J. Hawryluk,et al.  An Empirical Approach to Tokamak Transport , 1981 .

[11]  C. Kessel Bootstrap current in a tokamak , 1994 .

[12]  Zhihong Lin,et al.  Gyrokinetic particle simulation of neoclassical transport , 1995 .

[13]  O. Sauter,et al.  Erratum: “Neoclassical conductivity and bootstrap current formulas for general axisymmetric equilibria and arbitrary collisionality regime” [Phys. Plasmas 6, 2834 (1999)] , 2002 .

[14]  P. Catto,et al.  Enhancement of the bootstrap current in a tokamak pedestal. , 2010, Physical review letters.

[15]  Steven Paul Hirshman,et al.  Finite‐aspect‐ratio effects on the bootstrap current in tokamaks , 1988 .

[16]  O. Sauter,et al.  A 3-D Fokker-Planck Code for Studying Parallel Transport in Tokamak Geometry with Arbitrary Collisionalities and Application to Neoclassical Resistivity , 1994 .

[17]  R. White,et al.  Canonical Hamiltonian guiding center variables , 1990 .

[18]  James D. Callen,et al.  STABILITY OF TEARING MODES IN TOKAMAK PLASMAS , 1994 .

[19]  Bell,et al.  Bootstrap current in TFTR. , 1988, Physical review letters.

[20]  Experimental study of neoclassical plasma flow and bootstrap current in the tokamak TEXTOR , 1994 .

[21]  M. Wade,et al.  Validation of neoclassical bootstrap current models in the edge of an H-mode plasma. , 2004, Physical review letters.

[22]  J. F. Clarke,et al.  Hot-ion distribution function in the Oak Ridge tokamak , 1974 .

[23]  Allen H. Boozer,et al.  Monte Carlo evaluation of transport coefficients , 1981 .

[24]  Paul H. Rutherford,et al.  Nonlinear growth of the tearing mode , 1973 .

[25]  R. Littlejohn Differential forms and canonical variables for drift motion in toroidal geometry , 1985 .

[26]  Murakami,et al.  Bootstrap-current experiments in a toroidal plasma-confinement device. , 1991, Physical review letters.

[27]  J. Greene,et al.  Noncircular, finite aspect ratio, local equilibrium model , 1998 .

[28]  T. Osborne,et al.  Investigation of the formation of a fully pressure‐driven tokamak* , 1994 .

[29]  W. Houlberg,et al.  Bootstrap current and neoclassical transport in tokamaks of arbitrary collisionality and aspect ratio , 1997 .

[30]  J. L. Luxon,et al.  A design retrospective of the DIII-D tokamak , 2002 .

[31]  Daren P. Stotler,et al.  Neutral Gas Transport Modeling with DEGAS 2 , 1994 .

[32]  J. Connor,et al.  Neoclassical diffusion arising from magnetic-field ripples in Tokamaks , 1973 .

[33]  P. T. Bonoli,et al.  First results from Alcator‐C‐MOD* , 1994 .

[34]  Choong-Seock Chang,et al.  Plasma transport in stochastic magnetic field caused by vacuum resonant magnetic perturbations at diverted tokamak edge , 2010 .

[35]  E. Frieman,et al.  Toroidal plasma rotation in axisymmetric and slightly nonaxisymmetric systems , 1976 .

[36]  Lao,et al.  Determination of the noninductive current profile in tokamak plasmas. , 1994, Physical review letters.

[37]  Mitsuru Kikuchi,et al.  Bootstrap current during perpendicular neutral injection in JT-60 , 1990 .

[38]  Cohen,et al.  Collision operators for partially linearized particle simulation codes. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[39]  N. Nakajima,et al.  A new f method for neoclassical transport studies , 1999 .

[40]  F. Hinton,et al.  Theory of plasma transport in toroidal confinement systems , 1976 .

[41]  A. Boozer TIME DEPENDENT DRIFT HAMILTONIAN , 1982 .

[42]  L. L. Lao,et al.  Progress towards high performance plasmas in the National Spherical Torus Experiment (NSTX) , 2001 .

[43]  J. Manickam,et al.  The effect of progressively increasing lithium coatings on plasma discharge characteristics, transport, edge profiles and ELM stability in the National Spherical Torus Experiment , 2012 .

[44]  R. J. La Haye,et al.  Neoclassical tearing modes and their controla) , 2005 .