Epidemiological Models For Mutating Pathogens With Temporary Immunity

[1]  Christopher T. H. Baker,et al.  Issues in the numerical solution of evolutionary delay differential equations , 1995, Adv. Comput. Math..

[2]  Seyed M. Moghadas,et al.  Global stability of a two-stage epidemic model with generalized non-linear incidence , 2002, Math. Comput. Simul..

[3]  Yasuhiro Takeuchi,et al.  Global stability of an SIR epidemic model with time delays , 1995, Journal of mathematical biology.

[4]  Horst R. Thieme,et al.  Endemic Models with Arbitrarily Distributed Periods of Infection I: Fundamental Properties of the Model , 2000, SIAM J. Appl. Math..

[5]  D Greenhalgh,et al.  Hopf bifurcation in epidemic models with a time delay in vaccination. , 1999, IMA journal of mathematics applied in medicine and biology.

[6]  Y. N. Kyrychko,et al.  Global properties of a delayed SIR model with temporary immunity and nonlinear incidence rate , 2005 .

[7]  Yang Kuang,et al.  Modeling and analysis of a marine bacteriophage infection with latency period , 2001 .

[8]  Herbert W. Hethcote,et al.  The Mathematics of Infectious Diseases , 2000, SIAM Rev..

[9]  R. Sarkar,et al.  A delay differential equation model on harmful algal blooms in the presence of toxic substances. , 2002, IMA journal of mathematics applied in medicine and biology.

[10]  S. Levin,et al.  Dynamics of influenza A drift: the linear three-strain model. , 1999, Mathematical biosciences.

[12]  Graeme C. Wake,et al.  Lyapunov functions and global stability for SIR, SIRS, and SIS epidemiological models , 2002, Appl. Math. Lett..

[13]  W. O. Kermack,et al.  A contribution to the mathematical theory of epidemics , 1927 .

[14]  D Roose,et al.  Numerical bifurcation analysis of delay differential equations arising from physiological modeling , 2001, Journal of mathematical biology.

[15]  M. Bachar,et al.  HIV treatment models with time delay. , 2004, Comptes rendus biologies.

[16]  R. Webster,et al.  Influenza: an emerging disease. , 1998, Emerging infectious diseases.

[17]  J. Hyman,et al.  Threshold conditions for the spread of the HIV infection in age-structured populations of homosexual men. , 1994, Journal of theoretical biology.

[18]  O. Diekmann,et al.  On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations , 1990, Journal of mathematical biology.

[19]  James Watmough,et al.  A simple SIS epidemic model with a backward bifurcation , 2000, Journal of mathematical biology.

[20]  N. Rose,et al.  Differential Equations With Applications , 1967 .

[21]  A. Vazsonyi A Generalization of Nyquist's Stability Criteria , 1949 .

[22]  Z. Feng,et al.  A Two-Strain Tuberculosis Model with Age of Infection , 2002, SIAM J. Appl. Math..

[23]  L. Allen,et al.  Comparison of deterministic and stochastic SIS and SIR models in discrete time. , 2000, Mathematical biosciences.

[24]  E. Beretta,et al.  ANALYSIS OF A CHEMOSTAT MODEL FOR BACTERIA AND VIRULENT BACTERIOPHAGE , 2002 .

[25]  D. Downham,et al.  Models of superinfection and acquired immunity to multiple parasite strains , 1996, Journal of Applied Probability.

[26]  Wendi Wang,et al.  Global behavior of an SEIRS epidemic model with time delays , 2002, Appl. Math. Lett..

[27]  J. R. Thompson,et al.  Models for the simple epidemic. , 1997, Mathematical biosciences.

[28]  Herbert W. Hethcote,et al.  An epidemiological model with a delay and a nonlinear incidence rate , 1989, Journal of mathematical biology.

[29]  Jigui Jian,et al.  Stability, bifurcation and a new chaos in the logistic differential equation with delay , 2006 .

[30]  O. Diekmann,et al.  Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation , 2000 .

[31]  Jia Li,et al.  Epidemiological Models for Mutating Pathogens , 2004, SIAM J. Appl. Math..

[32]  Simon A. Levin,et al.  The dynamics of cocirculating influenza strains conferring partial cross-immunity , 1997, Journal of mathematical biology.

[33]  F. Brauer,et al.  Models for the spread of universally fatal diseases. , 1990, Journal of mathematical biology.

[34]  N. Macdonald Time lags in biological models , 1978 .

[35]  K. Cooke,et al.  Interaction of maturation delay and nonlinear birth in population and epidemic models , 1999, Journal of mathematical biology.

[36]  S. Levin,et al.  A model of influenza A drift evolution , 1996 .

[37]  Q. J. A. Khan,et al.  Recurrent epidemic cycles in an infectious disease model with a time delay in loss of vaccine immunity , 2005 .

[38]  Q. J. A. Khan,et al.  Hopf bifurcation in two SIRS density dependent epidemic models , 2004 .

[39]  L. Shampine,et al.  Solving DDEs in MATLAB , 2001 .

[40]  M. Newman,et al.  Simple model of epidemics with pathogen mutation. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  A. Sasaki Evolution of antigen drift/switching: continuously evading pathogens. , 1994, Journal of theoretical biology.

[42]  A. Pugliese,et al.  Periodic solutions: a robust numerical method for an S-I-R model of epidemics , 1999, Journal of mathematical biology.

[43]  Herbert W. Hethcote,et al.  NONLINEAR OSCILLATIONS IN EPIDEMIC MODELS , 1981 .