Two phase transitions induced by a magnetic field in graphite.

Different instabilities have been speculated for a three-dimensional electron gas confined to its lowest Landau level. The phase transition induced in graphite by a strong magnetic field, and believed to be a charge density wave, is the only experimentally established case of such instabilities. Studying the magnetoresistance in graphite for the first time up to 80 T, we find that the magnetic field induces two successive phase transitions, consisting of two distinct ordered states each restricted to a finite field window. In both states, an energy gap opens up in the out-of-plane conductivity and coexists with an unexpected in-plane metallicity for a fully gap bulk system. Such peculiar metallicity may arise as a consequence of edge-state transport expected to develop in the presence of a bulk gap.

[1]  A. Matsuo,et al.  Possible Excitonic Phase of Graphite in the Quantum Limit State , 2015, 1503.04414.

[2]  Kamran Behnia,et al.  Angle dependence of the orbital magnetoresistance in bismuth , 2015, 1501.01584.

[3]  Q. Gibson,et al.  Evidence for massive bulk Dirac fermions in Pb1−xSnxSe from Nernst and thermopower experiments , 2013, Nature Communications.

[4]  Steffen,et al.  Magnetothermoelectric properties of Bi2Se3 , 2012, 1209.1312.

[5]  R. Lyubovskaya,et al.  High-frequency magnetic oscillations of the organic metal θ-(ET)4ZnBr4(C6H4Cl2) in pulsed magnetic field of up to 81 T , 2012, 1210.2769.

[6]  Kamran Behnia,et al.  Landau spectrum and twin boundaries of bismuth in the extreme quantum limit , 2012, Proceedings of the National Academy of Sciences.

[7]  Kamran Behnia,et al.  Field-induced polarization of Dirac valleys in bismuth , 2011, Nature Physics.

[8]  Kamran Behnia,et al.  Angle-resolved Landau spectrum of electrons and holes in bismuth , 2011, 1107.2517.

[9]  Kamran Behnia,et al.  Nernst response of the Landau tubes in graphite across the quantum limit. , 2011, Physical review letters.

[10]  F. Guinea,et al.  Integer quantum Hall effect in trilayer graphene. , 2011, Physical review letters.

[11]  F. Guinea,et al.  Electron-Electron Interactions in Graphene: Current Status and Perspectives , 2010, 1012.3484.

[12]  P. Svoboda,et al.  Using magnetotransport to determine the spin splitting in graphite , 2010 .

[13]  A. Bratkovsky,et al.  Negative c-axis magnetoresistance in graphite , 2010, 1004.2516.

[14]  D. Maslov,et al.  Necessary and sufficient condition for longitudinal magnetoresistance , 2010, 1003.2997.

[15]  Andrei B. Sushkov,et al.  Strong surface scattering in ultrahigh mobility Bi2Se3 topological insulator crystals , 2010, 1003.2382.

[16]  S. Sondhi,et al.  Nematic valley ordering in quantum Hall systems , 2010, 1003.1978.

[17]  D. Bergman,et al.  Theory of dissipationless Nernst effects. , 2009, Physical review letters.

[18]  Y. Kopelevich,et al.  Nernst effect and dimensionality in the quantum limit , 2009, 0909.2137.

[19]  J. Singleton,et al.  A high-magnetic-field-induced density-wave state in graphite , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[20]  B. Vignolle,et al.  Electronic instability in bismuth far beyond the quantum limit , 2009, 0905.3835.

[21]  M. Goiran,et al.  Searching for the fractional quantum Hall effect in graphite. , 2009, Physical review letters.

[22]  M. Orlita,et al.  Consistent interpretation of the low-temperature magnetotransport in graphite using the Slonczewski-Weiss-McClure 3D band-structure calculations. , 2009, Physical review letters.

[23]  Kamran Behnia The Nernst effect and the boundaries of the Fermi liquid picture , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[24]  L. Balents,et al.  Bismuth in strong magnetic fields: Unconventional Zeeman coupling and correlation effects , 2008, 0810.3261.

[25]  B. Bernevig,et al.  Scenario for Fractional Quantum Hall Effect in Bulk Isotropic Materials , 2008, 0810.1757.

[26]  R. Cava,et al.  Phase Transitions of Dirac Electrons in Bismuth , 2008, Science.

[27]  L. Balicas,et al.  Signatures of Electron Fractionalization in Ultraquantum Bismuth , 2007, Science.

[28]  S. Raghu,et al.  Theory of the three-dimensional quantum Hall effect in graphite. , 2007, Physical review letters.

[29]  A. Geim,et al.  Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene , 2006, cond-mat/0602565.

[30]  M. Dressel,et al.  Scaling Behavior of the Longitudinal and Transverse Transport in Quasi One-Dimensional Organic Conductors , 2004, cond-mat/0409322.

[31]  D. Graf,et al.  High magnetic field induced charge density wave state in a quasi-one-dimensional organic conductor. , 2003, Physical review letters.

[32]  J. Singleton,et al.  Successive magnetic-field-induced electronic phase transitions in graphite , 2001 .

[33]  D. Maslov,et al.  Magnetic-field-induced Luttinger liquid , 2000, cond-mat/0006407.

[34]  Y. Iye,et al.  Non-ohmic out-of-plane transport in a high-magnetic-field-induced phase of graphite , 1999 .

[35]  H. Goto,et al.  Exchange and correlation effects in the three-dimensional electron gas in strong magnetic fields and application to graphite , 1998 .

[36]  J. Singleton,et al.  DESTRUCTION OF THE FIELD-INDUCED DENSITY-WAVE STATE IN GRAPHITE BY LARGE MAGNETIC FIELDS , 1998 .

[37]  A. Gossard,et al.  Observation of Chiral Surface States in the Integer Quantum Hall Effect , 1998 .

[38]  Fisher,et al.  Chiral surface states in the bulk quantum Hall effect. , 1995, Physical review letters.

[39]  Y. Takada,et al.  Charge- and spin-density-wave instabilities in high magnetic fields in graphite , 1994 .

[40]  Y. Iye,et al.  Magnetic-field-induced electronic phase transition in graphite , 1993 .

[41]  Sasaki,et al.  High-field phase in the magnetic-field-induced electronic phase transition of graphite. , 1992, Physical review. B, Condensed matter.

[42]  M. Rasolt,et al.  Theoretical aspects of superconductivity in very high magnetic fields , 1992 .

[43]  V. Yakovenko,et al.  Metals in a high magnetic field: A universality class of marginal Fermi liquids. , 1992, Physical review. B, Condensed matter.

[44]  Bauer,et al.  Magnetotransport studies on the metallic side of the metal-insulator transition in PbTe. , 1989, Physical review. B, Condensed matter.

[45]  Drew,et al.  Magnetic-field-induced localization in narrow-gap semiconductors Hg1-xCdxTe and InSb. , 1988, Physical review. B, Condensed matter.

[46]  Halperin,et al.  Multivalley electron gas in a strong magnetic field. , 1987, Physical review. B, Condensed matter.

[47]  Macdonald,et al.  Strong-magnetic-field states of the pure electron plasma. , 1987, Physical review letters.

[48]  G. Dresselhaus,et al.  Non-Ohmic transport in the magnetic-field-induced charge-density-wave phase of graphite. , 1985, Physical review letters.

[49]  Y. Iye,et al.  The magnetic field dependence of the critical temperature for the electronic phase transition in graphite in the quantum limit , 1984 .

[50]  New Rochelle,et al.  Magnetic Oscillations in Metals , 1984 .

[51]  K. Hiruma,et al.  Magnetoresistance Study of Bi and Bi–Sb Alloys in High Magnetic Fields. II. Landau Levels and Semimetal-Semiconductor Transition , 1983 .

[52]  G. Kido,et al.  Observation of the Magnetic-Field-Induced Semimetal-Semiconductor Transition in Bi under Megagauss Fields , 1982 .

[53]  M. Dresselhaus,et al.  High-magnetic-field electronic phase transition in graphite observed by magnetoresistance anomaly , 1982 .

[54]  J. H. Robertson Physics in high magnetic fields , 1981 .

[55]  H. Fukuyama,et al.  Electronic Phase Transition of Graphite in a Strong Magnetic Field , 1981 .

[56]  H. Fukuyama CDW instability of electron gas in a strong magnetic field , 1978 .

[57]  E. Otsuka,et al.  Galvanomagnetic Properties of n-Type InSb at Low Temperatures. I. Localization of Carriers and Metallic Impurity Conduction under Zero and Weak Magnetic Fields , 1977 .

[58]  S. Ono C-Axis Resistivity of Graphite in Connection with Stacking Faults , 1976 .

[59]  R. Elliott,et al.  The Wigner transition in a magnetic field , 1975 .

[60]  A. Abrikosov On the possibility of exciton formation in semimetals in extremely high magnetic fields. II , 1970 .

[61]  N. Mermin,et al.  GROUND STATE OF AN ELECTRON GAS IN A MAGNETIC FIELD , 1965 .

[62]  H. Philipp,et al.  Optical Properties of Graphite , 1965 .

[63]  J. Slonczewski,et al.  Band Structure of Graphite , 1958 .

[64]  J. W. McClure,et al.  Band Structure of Graphite and de Haas-van Alphen Effect , 1957 .

[65]  P. Kapitza The Study of the Specific Resistance of Bismuth Crystals and Its Change in Strong Magnetic Fields and Some Allied Problems , 1928 .

[66]  A. Hewson,et al.  Properties and Applications of Thermoelectric Materials , 2009 .

[67]  Thierry Giamarchi,et al.  Quantum physics in one dimension , 2004 .

[68]  D. Yoshioka The quantum hall effect , 2002 .

[69]  G. Grüner The dynamics of spin-density waves , 1994 .

[70]  Bertrand I. Halperin,et al.  Possible States for a Three-Dimensional Electron Gas in a Strong Magnetic Field , 1987 .