Proximal point algorithm, Douglas-Rachford algorithm and alternating projections: a case study
暂无分享,去创建一个
[1] J. Moreau. Proximité et dualité dans un espace hilbertien , 1965 .
[2] B. Martinet,et al. R'egularisation d''in'equations variationnelles par approximations successives , 1970 .
[3] R. Rockafellar. Monotone Operators and the Proximal Point Algorithm , 1976 .
[4] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .
[5] P. Lions,et al. Splitting Algorithms for the Sum of Two Nonlinear Operators , 1979 .
[6] Osman Güer. On the convergence of the proximal point algorithm for convex minimization , 1991 .
[7] øöö Blockinø. Phase retrieval, error reduction algorithm, and Fienup variants: A view from convex optimization , 2002 .
[8] Frank Deutsch,et al. Arbitrarily Slow Convergence of Sequences of Linear Operators: A Survey , 2011, Fixed-Point Algorithms for Inverse Problems in Science and Engineering.
[9] Heinz H. Bauschke,et al. Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.
[10] Heinz H. Bauschke,et al. Restricted Normal Cones and the Method of Alternating Projections: Applications , 2012, 1205.0318.
[11] Jonathan M. Borwein,et al. Analysis of the Convergence Rate for the Cyclic Projection Algorithm Applied to Basic Semialgebraic Convex Sets , 2013, SIAM J. Optim..
[12] Heinz H. Bauschke,et al. Linear and strong convergence of algorithms involving averaged nonexpansive operators , 2014, Journal of Mathematical Analysis and Applications.
[13] Hung M. Phan,et al. Linear convergence of the Douglas–Rachford method for two closed sets , 2014, 1401.6509.
[14] Heinz H. Bauschke,et al. The rate of linear convergence of the Douglas-Rachford algorithm for subspaces is the cosine of the Friedrichs angle , 2013, J. Approx. Theory.
[15] Peter G. Casazza,et al. Phase retrieval , 2015, SPIE Optical Engineering + Applications.