Density of sampling and interpolation in reproducing kernel Hilbert spaces
暂无分享,去创建一个
José Luis Romero | Karlheinz Gröchenig | Hartmut Führ | Andreas Klotz | Antti Haimi | K. Gröchenig | J. Romero | H. Führ | Andreas Klotz | Antti Haimi | Jose Luis Romero
[1] K. Seip,et al. Density theorems for sampling and interpolation in the Bargmann-Fock space II. , 1992 .
[2] K. Seip. Density theorems for sampling and interpolation in the Bargmann-Fock space I , 1992, math/9204238.
[3] Stephen M. Buckley,et al. IS THE MAXIMAL FUNCTION OF A LIPSCHITZ FUNCTION CONTINUOUS , 1999 .
[4] Gerard Kerkyacharian,et al. Heat kernel based decomposition of spaces of distributions in the framework of Dirichlet spaces , 2012, 1210.6237.
[5] Ingrid Daubechies,et al. The wavelet transform, time-frequency localization and signal analysis , 1990, IEEE Trans. Inf. Theory.
[6] H. Führ. Abstract Harmonic Analysis of Continuous Wavelet Transforms , 2005 .
[7] Henry Tabe,et al. Wavelet Transform , 2009, Encyclopedia of Biometrics.
[8] I. Daubechies,et al. Frames in the Bargmann Space of Entire Functions , 1988 .
[9] C. Heil. History and Evolution of the Density Theorem for Gabor Frames , 2007 .
[10] J. Ramanathan,et al. Incompleteness of Sparse Coherent States , 1995 .
[11] H. Feichtinger,et al. Banach spaces related to integrable group representations and their atomic decompositions, I , 1989 .
[12] Yurii Lyubarskii. Frames in the Bargmann space of entire functions , 1992 .
[13] L. D. Abreu. Sampling and interpolation in Bargmann-Fock spaces of polyanalytic functions , 2009, 0901.4386.
[14] K. Gröchenig,et al. What Is Variable Bandwidth? , 2015, 1512.06663.
[15] R. Duffin,et al. A class of nonharmonic Fourier series , 1952 .
[16] K. Gröchenig. Describing functions: Atomic decompositions versus frames , 1991 .
[17] Joaquim Ortega-Cerdà,et al. Interpolating and sampling sequences for entire functions , 2002 .
[18] Hong Rae Cho,et al. Exponentially weighted Lp-estimates for ∂¯ on the unit disc , 2013 .
[19] William P. Minicozzi,et al. LIOUVILLE THEOREMS FOR HARMONIC SECTIONS AND APPLICATIONS , 1998 .
[20] Karlheinz Gr,et al. The Homogeneous Approximation Property and the Comparison Theorem for Coherent Frames , 2007 .
[21] Emmanuel Breuillard. Geometry of Locally Compact Groups of Polynomial Growth and Shape of Large Balls , 2007 .
[22] Zeph Landau,et al. Measure functions for frames , 2006 .
[23] Afonso S. Bandeira,et al. Landau's necessary density conditions for the Hankel transform , 2011, 1111.6963.
[24] H. Landau. Necessary density conditions for sampling and interpolation of certain entire functions , 1967 .
[25] Joaquim Ortega-Cerdà,et al. Beurling-type density theorems for weightedLp spaces of entire functions , 1998 .
[26] Karlheinz Grochenig,et al. The Homogeneous Approximation Property and the Comparison Theorem for Coherent Frames , 2007, 0709.3752.
[27] Gitta Kutyniok,et al. Affine Density in Wavelet Analysis , 2007, Lecture Notes in Mathematics.
[28] Akram Aldroubi,et al. Nonuniform Sampling and Reconstruction in Shift-Invariant Spaces , 2001, SIAM Rev..
[29] Romain Tessera,et al. Large scale Sobolev inequalities on metric measure spaces and applications , 2007, math/0702751.
[30] Hans G. Feichtinger,et al. Theory and practice of irregular sampling , 2021, Wavelets.
[31] Karlheinz Gröchenig,et al. On Landau's Necessary Density Conditions for Sampling and Interpolation of Band-Limited Functions , 1996 .
[32] Mihail N. Kolountzakis,et al. A Weyl type formula for Fourier spectra and frames , 2003 .
[33] Hans G. Feichtinger,et al. Geometric Space–Frequency Analysis on Manifolds , 2015, 1512.08668.
[34] I. Pesenson. Sampling of Band-Limited Vectors , 2001 .
[35] K. Seip. Interpolation and sampling in spaces of analytic functions , 2004 .
[36] M. Unser. Sampling-50 years after Shannon , 2000, Proceedings of the IEEE.
[37] O. Norwood. Density , 1993, International Society of Hair Restoration Surgery.
[38] A. Schuster. On seip's description of sampling sequences for bergman spaces , 2000 .
[39] N. Lindholm,et al. Sampling in Weighted Lp Spaces of Entire Functions in Cn and Estimates of the Bergman Kernel , 2001 .
[40] R. Balan,et al. Density, overcompleteness, and localization of frames , 2006 .
[41] Laurent Saloff-Coste,et al. Variétés riemanniennes isométriques à l'infini , 1995 .
[42] Colin C. Graham. A uniform boundedness principle for compact sets and the decay of Fourier transforms , 1987 .
[43] J. Lagarias,et al. Structure of tilings of the line by a function , 1996 .
[44] Isaac Z. Pesenson,et al. Paley-Wiener subspace of vectors in a Hilbert space with applications to integral transforms , 2009 .
[45] Angelika Höfler,et al. Necessary density conditions for frames on homogeneous groups , 2014 .
[46] Alexander Olevskii,et al. Revisiting Landauʼs density theorems for Paley–Wiener spaces , 2012 .
[47] K. Seip. Beurling type density theorems in the unit disk , 1993 .
[48] K. Gröchenig,et al. Sampling theorems on locally compact groups from oscillation estimates , 2005, math/0509178.
[49] R. Balan,et al. Density, Overcompleteness, and Localization of Frames. I. Theory , 2005, math/0510360.
[50] H. Triebel. Theory Of Function Spaces , 1983 .
[51] Yurii Lyubarskii,et al. Bandlimited Lipschitz functions , 2013, 1307.7359.
[52] R. Tessera. Volume of spheres in doubling metric measured spaces and in groups of polynomial growth , 2005 .
[53] Uhr. Simultaneous Estimates for Vector-valued Gabor Frames of Hermite Functions , 2006 .
[54] Isaac Z. Pesenson,et al. Sampling of Paley-Wiener functions on stratified groups , 1998 .