Density of sampling and interpolation in reproducing kernel Hilbert spaces

We derive necessary density conditions for sampling and for interpolation in general reproducing kernel Hilbert spaces satisfying some natural conditions on the geometry of the space and the reproducing kernel. If the volume of shells is small compared to the volume of balls (weak annular decay property) and if the kernel possesses some off-diagonal decay or even some weaker form of localization, then there exists a critical density D with the following property: a set of sampling has density ⩾D, whereas a set of interpolation has density ⩽D. The main theorem unifies many known density theorems in signal processing, complex analysis, and harmonic analysis. For the special case of bandlimited function we recover Landau's fundamental density result. In complex analysis we rederive a critical density for generalized Fock spaces. In harmonic analysis we obtain the first general result about the density of coherent frames.

[1]  K. Seip,et al.  Density theorems for sampling and interpolation in the Bargmann-Fock space II. , 1992 .

[2]  K. Seip Density theorems for sampling and interpolation in the Bargmann-Fock space I , 1992, math/9204238.

[3]  Stephen M. Buckley,et al.  IS THE MAXIMAL FUNCTION OF A LIPSCHITZ FUNCTION CONTINUOUS , 1999 .

[4]  Gerard Kerkyacharian,et al.  Heat kernel based decomposition of spaces of distributions in the framework of Dirichlet spaces , 2012, 1210.6237.

[5]  Ingrid Daubechies,et al.  The wavelet transform, time-frequency localization and signal analysis , 1990, IEEE Trans. Inf. Theory.

[6]  H. Führ Abstract Harmonic Analysis of Continuous Wavelet Transforms , 2005 .

[7]  Henry Tabe,et al.  Wavelet Transform , 2009, Encyclopedia of Biometrics.

[8]  I. Daubechies,et al.  Frames in the Bargmann Space of Entire Functions , 1988 .

[9]  C. Heil History and Evolution of the Density Theorem for Gabor Frames , 2007 .

[10]  J. Ramanathan,et al.  Incompleteness of Sparse Coherent States , 1995 .

[11]  H. Feichtinger,et al.  Banach spaces related to integrable group representations and their atomic decompositions, I , 1989 .

[12]  Yurii Lyubarskii Frames in the Bargmann space of entire functions , 1992 .

[13]  L. D. Abreu Sampling and interpolation in Bargmann-Fock spaces of polyanalytic functions , 2009, 0901.4386.

[14]  K. Gröchenig,et al.  What Is Variable Bandwidth? , 2015, 1512.06663.

[15]  R. Duffin,et al.  A class of nonharmonic Fourier series , 1952 .

[16]  K. Gröchenig Describing functions: Atomic decompositions versus frames , 1991 .

[17]  Joaquim Ortega-Cerdà,et al.  Interpolating and sampling sequences for entire functions , 2002 .

[18]  Hong Rae Cho,et al.  Exponentially weighted Lp-estimates for ∂¯ on the unit disc , 2013 .

[19]  William P. Minicozzi,et al.  LIOUVILLE THEOREMS FOR HARMONIC SECTIONS AND APPLICATIONS , 1998 .

[20]  Karlheinz Gr,et al.  The Homogeneous Approximation Property and the Comparison Theorem for Coherent Frames , 2007 .

[21]  Emmanuel Breuillard Geometry of Locally Compact Groups of Polynomial Growth and Shape of Large Balls , 2007 .

[22]  Zeph Landau,et al.  Measure functions for frames , 2006 .

[23]  Afonso S. Bandeira,et al.  Landau's necessary density conditions for the Hankel transform , 2011, 1111.6963.

[24]  H. Landau Necessary density conditions for sampling and interpolation of certain entire functions , 1967 .

[25]  Joaquim Ortega-Cerdà,et al.  Beurling-type density theorems for weightedLp spaces of entire functions , 1998 .

[26]  Karlheinz Grochenig,et al.  The Homogeneous Approximation Property and the Comparison Theorem for Coherent Frames , 2007, 0709.3752.

[27]  Gitta Kutyniok,et al.  Affine Density in Wavelet Analysis , 2007, Lecture Notes in Mathematics.

[28]  Akram Aldroubi,et al.  Nonuniform Sampling and Reconstruction in Shift-Invariant Spaces , 2001, SIAM Rev..

[29]  Romain Tessera,et al.  Large scale Sobolev inequalities on metric measure spaces and applications , 2007, math/0702751.

[30]  Hans G. Feichtinger,et al.  Theory and practice of irregular sampling , 2021, Wavelets.

[31]  Karlheinz Gröchenig,et al.  On Landau's Necessary Density Conditions for Sampling and Interpolation of Band-Limited Functions , 1996 .

[32]  Mihail N. Kolountzakis,et al.  A Weyl type formula for Fourier spectra and frames , 2003 .

[33]  Hans G. Feichtinger,et al.  Geometric Space–Frequency Analysis on Manifolds , 2015, 1512.08668.

[34]  I. Pesenson Sampling of Band-Limited Vectors , 2001 .

[35]  K. Seip Interpolation and sampling in spaces of analytic functions , 2004 .

[36]  M. Unser Sampling-50 years after Shannon , 2000, Proceedings of the IEEE.

[37]  O. Norwood Density , 1993, International Society of Hair Restoration Surgery.

[38]  A. Schuster On seip's description of sampling sequences for bergman spaces , 2000 .

[39]  N. Lindholm,et al.  Sampling in Weighted Lp Spaces of Entire Functions in Cn and Estimates of the Bergman Kernel , 2001 .

[40]  R. Balan,et al.  Density, overcompleteness, and localization of frames , 2006 .

[41]  Laurent Saloff-Coste,et al.  Variétés riemanniennes isométriques à l'infini , 1995 .

[42]  Colin C. Graham A uniform boundedness principle for compact sets and the decay of Fourier transforms , 1987 .

[43]  J. Lagarias,et al.  Structure of tilings of the line by a function , 1996 .

[44]  Isaac Z. Pesenson,et al.  Paley-Wiener subspace of vectors in a Hilbert space with applications to integral transforms , 2009 .

[45]  Angelika Höfler,et al.  Necessary density conditions for frames on homogeneous groups , 2014 .

[46]  Alexander Olevskii,et al.  Revisiting Landauʼs density theorems for Paley–Wiener spaces , 2012 .

[47]  K. Seip Beurling type density theorems in the unit disk , 1993 .

[48]  K. Gröchenig,et al.  Sampling theorems on locally compact groups from oscillation estimates , 2005, math/0509178.

[49]  R. Balan,et al.  Density, Overcompleteness, and Localization of Frames. I. Theory , 2005, math/0510360.

[50]  H. Triebel Theory Of Function Spaces , 1983 .

[51]  Yurii Lyubarskii,et al.  Bandlimited Lipschitz functions , 2013, 1307.7359.

[52]  R. Tessera Volume of spheres in doubling metric measured spaces and in groups of polynomial growth , 2005 .

[53]  Uhr Simultaneous Estimates for Vector-valued Gabor Frames of Hermite Functions , 2006 .

[54]  Isaac Z. Pesenson,et al.  Sampling of Paley-Wiener functions on stratified groups , 1998 .