RATE OF CONVERGENCE FOR LOGSPLINE SPECTRAL DENSITY ESTIMATION
暂无分享,去创建一个
Young K. Truong | Charles Kooperberg | Charles J. Stone | C. J. Stone | Y. Truong | C. Kooperberg | C. Stone
[1] C. J. Stone,et al. The Dimensionality Reduction Principle for Generalized Additive Models , 1986 .
[2] Peter Bloomfield,et al. DETERMINING THE BANDWIDTH OF A KERNEL SPECTRUM ESTIMATE , 1987 .
[3] G. Wahba,et al. Periodic splines for spectral density estimation: the use of cross validation for determining the degree of smoothing , 1975 .
[4] Richard A. Davis,et al. Time Series: Theory and Methods (2nd ed.). , 1992 .
[5] Richard A. Davis,et al. Time Series: Theory and Methods (2Nd Edn) , 1993 .
[6] Richard A. Davis,et al. Time Series: Theory and Methods , 2013 .
[7] D. B. Preston. Spectral Analysis and Time Series , 1983 .
[8] Joseph P. Romano,et al. A General Resampling Scheme for Triangular Arrays of $\alpha$-Mixing Random Variables with Application to the Problem of Spectral Density Estimation , 1992 .
[9] C. Hurvich,et al. CROSS‐VALIDATORY CHOICE OF A SPECTRUM ESTIMATE AND ITS CONNECTIONS WITH AIC , 1990 .
[10] G. Wahba. Automatic Smoothing of the Log Periodogram , 1980 .
[11] C. J. Stone,et al. The Use of Polynomial Splines and Their Tensor Products in Multivariate Function Estimation , 1994 .
[12] C. R. Deboor,et al. A practical guide to splines , 1978 .
[13] J. Swanepoel,et al. The bootstrap applied to power spectral density function estimation , 1986 .
[14] L. Schumaker. Spline Functions: Basic Theory , 1981 .
[15] Wolfgang Härdle,et al. On Bootstrapping Kernel Spectral Estimates , 1992 .
[16] Young K. Truong,et al. LOGSPLINE ESTIMATION OF A POSSIBLY MIXED SPECTRAL DISTRIBUTION , 1995 .