RATE OF CONVERGENCE FOR LOGSPLINE SPECTRAL DENSITY ESTIMATION

. The logarithm of the spectral density function for a stationary process is approximated by polynomial splines. The approximation is chosen to maximize the expected log-likelihood based on the asymptotic properties of the periodogram. Estimates of this approximation are shown to possess the usual nonparametric rate of convergence when the number of knots suitably increases to infinity.

[1]  C. J. Stone,et al.  The Dimensionality Reduction Principle for Generalized Additive Models , 1986 .

[2]  Peter Bloomfield,et al.  DETERMINING THE BANDWIDTH OF A KERNEL SPECTRUM ESTIMATE , 1987 .

[3]  G. Wahba,et al.  Periodic splines for spectral density estimation: the use of cross validation for determining the degree of smoothing , 1975 .

[4]  Richard A. Davis,et al.  Time Series: Theory and Methods (2nd ed.). , 1992 .

[5]  Richard A. Davis,et al.  Time Series: Theory and Methods (2Nd Edn) , 1993 .

[6]  Richard A. Davis,et al.  Time Series: Theory and Methods , 2013 .

[7]  D. B. Preston Spectral Analysis and Time Series , 1983 .

[8]  Joseph P. Romano,et al.  A General Resampling Scheme for Triangular Arrays of $\alpha$-Mixing Random Variables with Application to the Problem of Spectral Density Estimation , 1992 .

[9]  C. Hurvich,et al.  CROSS‐VALIDATORY CHOICE OF A SPECTRUM ESTIMATE AND ITS CONNECTIONS WITH AIC , 1990 .

[10]  G. Wahba Automatic Smoothing of the Log Periodogram , 1980 .

[11]  C. J. Stone,et al.  The Use of Polynomial Splines and Their Tensor Products in Multivariate Function Estimation , 1994 .

[12]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[13]  J. Swanepoel,et al.  The bootstrap applied to power spectral density function estimation , 1986 .

[14]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[15]  Wolfgang Härdle,et al.  On Bootstrapping Kernel Spectral Estimates , 1992 .

[16]  Young K. Truong,et al.  LOGSPLINE ESTIMATION OF A POSSIBLY MIXED SPECTRAL DISTRIBUTION , 1995 .