Implications of different waterfowl farming on cephalosporin resistance: Investigating the role of blaCTX-M-55

[1]  S. Dutta,et al.  Plasmid-mediated AmpC in Klebsiella pneumoniae and Escherichia coli from septicaemic neonates - diversity, transmission and phenotypic detection. , 2023, Journal of Global Antimicrobial Resistance.

[2]  M. Motyl,et al.  In vitro activity of imipenem/relebactam against non-Morganellaceae Enterobacterales and Pseudomonas aeruginosa in the Asia-Pacific region: SMART 2017-2020. , 2023, International Journal of Antimicrobial Agents.

[3]  O. Thekisoe,et al.  Antimicrobial resistance genes of Escherichia coli, a bacterium of “One Health” importance in South Africa: Systematic review and meta-analysis , 2023, AIMS microbiology.

[4]  M. Mulvey,et al.  Dynamics of extended-spectrum cephalosporin resistance genes in Escherichia coli from Europe and North America , 2022, Nature communications.

[5]  Xinglong Wang,et al.  Characterization of Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolates That Cause Diarrhea in Sheep in Northwest China , 2022, Microbiology spectrum.

[6]  Lei Shi,et al.  Genetic context of blaCTX–M–55 and qnrS1 genes in a foodborne Salmonella enterica serotype Saintpaul isolate from China , 2022, Frontiers in Microbiology.

[7]  M. L. Penkal,et al.  Escherichia coli ST224 and IncF/blaCTX-M-55 plasmids drive resistance to extended-spectrum cephalosporins in poultry flocks in Parana, Brazil. , 2022, Journal of food microbiology.

[8]  X. Liao,et al.  Distribution and driving factors of antibiotic resistance genes in treated wastewater from different types of livestock farms. , 2022, Science of the Total Environment.

[9]  R. Jia,et al.  Emergence of plasmid-mediated tigecycline, β-lactam and florfenicol resistance genes tet(X), blaOXA-347 and floR in Riemerella anatipestifer isolated in China , 2022, Poultry science.

[10]  J. Álvarez,et al.  Global Distribution of Extended Spectrum Cephalosporin and Carbapenem Resistance and Associated Resistance Markers in Escherichia coli of Swine Origin – A Systematic Review and Meta-Analysis , 2022, Frontiers in Microbiology.

[11]  M. V. Cunha,et al.  A walk on the wild side: Wild ungulates as potential reservoirs of multi-drug resistant bacteria and genes, including Escherichia coli harbouring CTX-M beta-lactamases. , 2022, Environmental pollution.

[12]  W. Qiao,et al.  Occurrence and transfer characteristics of blaCTX-M genes among Escherichia coli in anaerobic digestion systems treating swine waste. , 2022, Science of the Total Environment.

[13]  F. A. Gogry,et al.  Molecular characterization of resistance determinants and mobile genetic elements of ESBL producing multidrug-resistant bacteria from freshwater lakes in Kashmir, India. , 2022, Science of the Total Environment.

[14]  Y. J. Lee,et al.  Molecular characteristics of ESBL-producing Escherichia coli isolated from chickens with colibacillosis , 2022, Journal of veterinary science.

[15]  Ya-fei Li,et al.  Genetic Context Diversity of Plasmid-Borne blaCTX-M-55 in Escherichia coli Isolated from Waterfowl. , 2022, Journal of global antimicrobial resistance.

[16]  Alan D. Lopez,et al.  Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis , 2022, The Lancet.

[17]  K. Holt,et al.  ESBL plasmids in Klebsiella pneumoniae: diversity, transmission and contribution to infection burden in the hospital setting , 2021, medRxiv.

[18]  Jun Liu,et al.  Migratory wild birds carrying multidrug-resistant Escherichia coli as potential transmitters of antimicrobial resistance in China , 2021, PloS one.

[19]  S. Okada,et al.  The emergence of CTX-M-55 in ESBL-producing Escherichia coli from vegetables sold in local markets of northern Thailand. , 2021, Japanese journal of infectious diseases.

[20]  S. Thakur,et al.  Identification of CTX-M Type ESBL E. coli from Sheep and Their Abattoir Environment Using Whole-Genome Sequencing , 2021, Pathogens.

[21]  Teerapong Yata,et al.  Multiple and High-Risk Clones of Extended-Spectrum Cephalosporin-Resistant and blaNDM-5-Harbouring Uropathogenic Escherichia coli from Cats and Dogs in Thailand , 2021, Antibiotics.

[22]  Ya-wei Hou,et al.  Drug susceptibility and molecular epidemiology of Escherichia coli in bloodstream infections in Shanxi, China , 2021, PeerJ.

[23]  J. E. Olsen,et al.  Genetic Comparison of ESBL-Producing Escherichia coli from Workers and Pigs at Vietnamese Pig Farms , 2021, Antibiotics.

[24]  Jian-Hua Liu,et al.  Clonal spread of Escherichia coli O101:H9-ST10 and O101:H9-ST167 strains carrying fosA3 and blaCTX-M-14 among diarrheal calves in a Chinese farm, with Australian Chroicocephalus as the possible origin of E. coli O101:H9-ST10 , 2021, Zoological research.

[25]  R. Jia,et al.  High incidence of multi-drug resistance and heterogeneity of mobile genetic elements in Escherichia coli isolates from diseased ducks in Sichuan province of China. , 2021, Ecotoxicology and Environmental Safety.

[26]  Jian-Hua Liu,et al.  The Formation of Two Hybrid Plasmids Mediated by IS26 and Tn6952 in Salmonella enterica Serotype Enteritidis , 2021, Frontiers in Microbiology.

[27]  Jianzhong Shen,et al.  Corrigendum to "High prevalence and persistence of carbapenem and colistin resistance in livestock farm environments in China". , 2021, Journal of Hazardous Materials.

[28]  W. Blankenfeldt,et al.  Antimicrobial resistance dynamics and the one-health strategy: a review , 2021, Environmental Chemistry Letters.

[29]  J. Wiącek,et al.  Antimicrobial Resistance Glides in the Sky—Free-Living Birds as a Reservoir of Resistant Escherichia coli With Zoonotic Potential , 2021, Frontiers in Microbiology.

[30]  Y. Park,et al.  Characterization of Extended-Spectrum β-Lactamase-Producing and AmpC β-Lactamase-Producing Enterobacterales Isolated from Companion Animals in Korea , 2021, Antibiotics.

[31]  Hua-run Sun,et al.  Genomic characteristics of mcr-1 and blaCTX-M-type in a single multidrug-resistant Escherichia coli ST93 from chicken in China , 2021, Poultry science.

[32]  L. Cerdeira,et al.  Genomic insights of high-risk clones of ESBL-producing Escherichia coli isolated from community infections and commercial meat in southern Brazil , 2021, Scientific Reports.

[33]  Jianzhong Shen,et al.  Prevalence and risk analysis of mobile colistin resistance and extended-spectrum β-lactamase genes carriage in pet dogs and their owners: a population based cross-sectional study , 2021, Emerging microbes & infections.

[34]  Jihyun Song,et al.  Extended-spectrum β-lactamase-producing Escherichia coli isolated from raw vegetables in South Korea , 2020, Scientific Reports.

[35]  M. Castanheira,et al.  Activity of Cefiderocol, Ceftazidime-Avibactam, and Eravacycline against Carbapenem-Resistant Escherichia coli Isolates from the United States and International Sites in Relation to Clonal Background, Resistance Genes, Coresistance, and Region , 2020, Antimicrobial Agents and Chemotherapy.

[36]  C. Torres,et al.  Extended Spectrum β-Lactamase-Producing Escherichia coli and Klebsiella pneumoniae from Broiler Liver in the Center of Algeria, with Detection of CTX-M-55 and B2/ST131-CTX-M-15 in Escherichia coli. , 2020, Microbial drug resistance.

[37]  M. Castanheira,et al.  Activity of Imipenem-Relebactam against Carbapenem-Resistant Escherichia coli Isolates from the United States in Relation to Clonal Background, Resistance Genes, Coresistance, and Region , 2020, Antimicrobial Agents and Chemotherapy.

[38]  Kyungwon Lee,et al.  Whole-Genome Analysis of blaCTX-M-55-Carrying Escherichia coli Among Pigs, Farm Environment, and Farm Workers , 2019, Annals of laboratory medicine.

[39]  Z. Daoud,et al.  Understanding the Epidemiology of Multi-Drug Resistant Gram-Negative Bacilli in the Middle East Using a One Health Approach , 2019, Front. Microbiol..

[40]  G. Peirano,et al.  Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae: Update on Molecular Epidemiology and Treatment Options , 2019, Drugs.

[41]  Xiuying Zhang,et al.  Prevalence and molecular epidemiology characteristics of carbapenem-resistant Escherichia coli in Heilongjiang Province, China , 2019, Infection and drug resistance.

[42]  Hong Yang,et al.  High prevalence of CTX-M belonging to ST410 and ST889 among ESBL producing E. coli isolates from waterfowl birds in China's tropical island, Hainan. , 2019, Acta tropica.

[43]  M. Ploy,et al.  Proteae: a reservoir of class 2 integrons? , 2019, The Journal of antimicrobial chemotherapy.

[44]  Paula Leoro-Garzón,et al.  Multi-drug resistant Escherichia coli isolated from canine feces in a public park in Quito, Ecuador. , 2019, Journal of global antimicrobial resistance.

[45]  J. Madec,et al.  Emergence of blaCTX-M-55 associated with fosA, rmtB and mcr gene variants in Escherichia coli from various animal species in France , 2018, The Journal of antimicrobial chemotherapy.

[46]  Xiaobing Guo,et al.  Genetic contexts related to the diffusion of plasmid-mediated CTX-M-55 extended-spectrum beta-lactamase isolated from Enterobacteriaceae in China , 2018, Annals of clinical microbiology and antimicrobials.

[47]  O. Awoyomi,et al.  Antimicrobial usage and presence of extended-spectrum β-lactamase-producing Enterobacteriaceae in animal-rearing households of selected rural and peri-urban communities. , 2018, Veterinary microbiology.

[48]  S. Yamasaki,et al.  Prevalence of extended-spectrum β-lactamase-producing Escherichia coli and residual antimicrobials in the environment in Vietnam , 2017, Animal Health Research Reviews.

[49]  Yang Wang,et al.  Characterization of NDM-5-positive extensively resistant Escherichia coli isolates from dairy cows. , 2017, Veterinary microbiology.

[50]  Jian-Hua Liu,et al.  Impact of plasmid-borne oqxAB on the development of fluoroquinolone resistance and bacterial fitness in Escherichia coli , 2017, The Journal of antimicrobial chemotherapy.

[51]  Z. Miao,et al.  Antimicrobial Resistance and Molecular Epidemiology of ESBL-Producing Escherichia coli Isolated from Outpatients in Town Hospitals of Shandong Province, China , 2017, Front. Microbiol..

[52]  Jian Sun,et al.  Characterization of CTX-M-14-producing Escherichia coli from food-producing animals , 2015, Front. Microbiol..

[53]  Xiao-kui Guo,et al.  Drug susceptibility and molecular epidemiology of Escherichia coli in bloodstream infections in Shanghai, China, 2011–2013 , 2015, Infectious diseases.

[54]  R. Stephan,et al.  Extended-Spectrum- -Lactamase-Producing Enterobacteriaceae Isolated from Vegetables Imported from the Dominican Republic, India, Thailand, and Vietnam , 2015 .

[55]  Jian-Hua Liu,et al.  F33: A-: B-, IncHI2/ST3, and IncI1/ST71 plasmids drive the dissemination of fosA3 and blaCTX−M−55/−14/−65 in Escherichia coli from chickens in China , 2014, Front. Microbiol..

[56]  Yonghong Xiao,et al.  Nationwide high prevalence of CTX-M and an increase of CTX-M-55 in Escherichia coli isolated from patients with community-onset infections in Chinese county hospitals , 2014, BMC Infectious Diseases.

[57]  Jian-Hua Liu,et al.  Increasing prevalence of extended-spectrum cephalosporin-resistant Escherichia coli in food animals and the diversity of CTX-M genotypes during 2003-2012. , 2014, Veterinary microbiology.

[58]  T. Sekizaki,et al.  Development of a Two-Step Multiplex PCR Assay for Typing of Capsular Polysaccharide Synthesis Gene Clusters of Streptococcus suis , 2014, Journal of Clinical Microbiology.

[59]  G. Duan,et al.  Transposition of ISEcp1 modulates blaCTX-M-55-mediated Shigella flexneri resistance to cefalothin. , 2013, International journal of antimicrobial agents.

[60]  Fabio Arena,et al.  CTX-M-type β-lactamases: a successful story of antibiotic resistance. , 2013, International journal of medical microbiology : IJMM.

[61]  O. Belhadj,et al.  Chromosomal blaCTX-M-₁₅ associated with ISEcp1 in Proteus mirabilis and Morganella morganii isolated at the Military Hospital of Tunis, Tunisia. , 2012, Journal of medical microbiology.

[62]  Wei-hua Zhao,et al.  Epidemiology and genetics of CTX-M extended-spectrum β-lactamases in Gram-negative bacteria , 2012, Critical reviews in microbiology.

[63]  Jian-Hua Liu,et al.  Characterization of Extended-Spectrum β-Lactamase Genes Found among Escherichia coli Isolates from Duck and Environmental Samples Obtained on a Duck Farm , 2012, Applied and Environmental Microbiology.

[64]  R. Cantón,et al.  Co-resistance: an opportunity for the bacteria and resistance genes. , 2011, Current opinion in pharmacology.

[65]  Jian-Hua Liu,et al.  High prevalence of bla(CTX-M) extended-spectrum β-lactamase genes in Escherichia coli isolates from pets and emergence of CTX-M-64 in China. , 2010, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[66]  Michael R. Mulvey,et al.  Prevalence of Antimicrobial-Resistant Pathogens in Canadian Hospitals: Results of the Canadian Ward Surveillance Study (CANWARD 2007) , 2009 .

[67]  I. Damjanova,et al.  Expansion and countrywide dissemination of ST11, ST15 and ST147 ciprofloxacin-resistant CTX-M-15-type beta-lactamase-producing Klebsiella pneumoniae epidemic clones in Hungary in 2005--the new 'MRSAs'? , 2008, The Journal of antimicrobial chemotherapy.

[68]  A. Apisarnthanarak,et al.  The emergence of a novel ceftazidime-resistant CTX-M extended-spectrum beta-lactamase, CTX-M-55, in both community-onset and hospital-acquired infections in Thailand. , 2007, Diagnostic microbiology and infectious disease.

[69]  Xian-Zhi Li,et al.  β-Lactam resistance and β-lactamases in bacteria of animal origin , 2007 .

[70]  D. Mevius,et al.  Occurrence and characteristics of class 1, 2 and 3 integrons in Escherichia coli, Salmonella and Campylobacter spp. in the Netherlands. , 2007, The Journal of antimicrobial chemotherapy.

[71]  M. Kaufmann,et al.  Community and hospital spread of Escherichia coli producing CTX-M extended-spectrum beta-lactamases in the UK. , 2004, The Journal of antimicrobial chemotherapy.

[72]  R. Bonnet Growing Group of Extended-Spectrum β-Lactamases: the CTX-M Enzymes , 2004, Antimicrobial Agents and Chemotherapy.

[73]  P. Nordmann,et al.  Biochemical analysis of the ceftazidime-hydrolysing extended-spectrum β-lactamase CTX-M-15 and of its structurally related β-lactamase CTX-M-3 , 2002 .

[74]  J. Herrmann,et al.  Diversity of CTX-M beta-lactamases and their promoter regions from Enterobacteriaceae isolated in three Parisian hospitals. , 2002, FEMS microbiology letters.

[75]  P. Bradford Extended-Spectrum β-Lactamases in the 21st Century: Characterization, Epidemiology, and Detection of This Important Resistance Threat , 2001, Clinical Microbiology Reviews.

[76]  P. Nordmann,et al.  Plasmid-mediated extended-spectrum beta-lactamase (CTX-M-3 like) from India and gene association with insertion sequence ISEcp1. , 2001, FEMS microbiology letters.

[77]  O. Clermont,et al.  Rapid and Simple Determination of theEscherichia coli Phylogenetic Group , 2000, Applied and Environmental Microbiology.

[78]  P. Fey,et al.  Ceftriaxone-resistant salmonella infection acquired by a child from cattle. , 2000, The New England journal of medicine.

[79]  P. Nordmann,et al.  Minor extended-spectrum β-lactamases , 2008 .

[80]  P. Nordmann,et al.  Genetic support of extended-spectrum beta-lactamases. , 2008, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[81]  K. Hopkins,et al.  Identification of novel plasmid-mediated extended-spectrum beta-lactamase CTX-M-57 in Salmonella enterica serovar Typhimurium. , 2008, International journal of antimicrobial agents.

[82]  G. Arlet,et al.  DNA sequence analysis of the genetic environment of various blaCTX-M genes. , 2006, The Journal of antimicrobial chemotherapy.