Applications of the Stell–Hemmer Potential to Understanding Second Critical Points in Real Systems

We consider the novel properties of the Stell–Hemmer core-softened potentials. First we explore how the theoretically predicted second critical point for these potentials is related to the occurrence of the experimentally observed solid–solid isostructural critical point. We then discuss how this class of potentials can generate anomalies analogous to those found experimentally in liquid water.

[1]  G. Stell,et al.  Phase Transitions Due to Softness of the Potential Core , 1972 .

[2]  Per C. Hemmer,et al.  Fluids with Several Phase Transitions , 1970 .

[3]  F. Stillinger,et al.  Negative thermal expansion in the Gaussian core model , 1997 .

[4]  G. Adam,et al.  On the Temperature Dependence of Cooperative Relaxation Properties in Glass‐Forming Liquids , 1965 .

[5]  K. K. Mon A study of the structural properties of metallic systems. 1: Metallic hydrogen. 2: Core-polarization and the structure of simple metals , 1979 .

[6]  F. Stillinger,et al.  An orientational perturbation theory for pure liquid water , 1993 .

[7]  J. Gallagher,et al.  NBS/NRC Steam Tables: Thermodynamic and Transport Properties and Computer Programs for Vapor and Liquid States of Water in SI Units, , 1984 .

[8]  H. Eugene Stanley,et al.  Configurational entropy and diffusivity of supercooled water , 1999, Nature.

[9]  Waterlike anomalies for core-softened models of fluids: one dimension. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[10]  H. Eugene Stanley,et al.  Phase behaviour of metastable water , 1992, Nature.

[11]  H. Eugene Stanley,et al.  Liquid-State Anomalies and the Stell-Hemmer Core-Softened Potential , 1998 .

[12]  H. Stanley,et al.  The relationship between liquid, supercooled and glassy water , 1998, Nature.

[13]  H. E. Stanley,et al.  Water-like anomalies for core-softened models of fluids , 2000 .

[14]  D. A. Young,et al.  Melting-curve extrema from a repulsive ''step'' potential , 1977 .

[15]  Starr,et al.  Instantaneous normal mode analysis of supercooled water , 1999, Physical review letters.

[16]  John S. Rowlinson,et al.  New Model for the Study of Liquid–Vapor Phase Transitions , 1970 .

[17]  Carol K. Hall,et al.  Isostructural phase transitions due to core collapse. I. A one‐dimensional model , 1976 .

[18]  Arieh Ben-Naim,et al.  Statistical Thermodynamics for Chemists and Biochemists , 1992, Springer US.

[19]  Lester Haar Nbs/Nrc Steam Tables , 1984 .

[20]  I. Yokoyama,et al.  Effective interatomic pair potentials in liquid polyvalent metals from observed structure data , 1985 .

[21]  Sastry,et al.  Singularity-free interpretation of the thermodynamics of supercooled water. , 1998, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[22]  H. Stanley,et al.  Slow dynamics of water under pressure , 1999, cond-mat/9901049.

[23]  Lang,et al.  Diffusion in supercooled water to 300 MPa. , 1987, Physical review letters.

[24]  E. A. Jagla PHASE BEHAVIOR OF A SYSTEM OF PARTICLES WITH CORE COLLAPSE , 1998 .