Pushing the Efficiency Envelope for Semiconductor Nanocrystal-Based Electroluminescence Devices Using Anisotropic Nanocrystals

Colloidal semiconductor nanocrystals hold great promise in display technologies, as the tunable energy levels and narrow emission bandwidth allow for wide gamut in color space. Impetus for energy-efficient, high-color-quality display has driven the surge of interest in electrically driven quantum dot-based light-emitting diodes (QD-LEDs). While extensive efforts have led to synthesis of QDs with near-unity photoluminescence quantum yield and fabrication of QD-LEDs with external quantum efficiency reaching to the theoretical limit (∼20%), low out-coupling factor poses a challenge in the way of improving the device performance when spherical QDs are used. Geometrically anisotropic nanocrystals (NCs) such as nanorods or nanoplatelets represent a unique possible solution to enhancing light extraction efficiency. In this Perspective, we highlight important design principles of individual anisotropic NCs and their assembly in the context of LED applications.

[1]  P. Guyot-Sionnest,et al.  Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals , 1996 .

[2]  Tobias D. Schmidt,et al.  Device efficiency of organic light‐emitting diodes: Progress by improved light outcoupling , 2013 .

[3]  M. Artemyev,et al.  Time-Resolved Stark Spectroscopy in CdSe Nanoplatelets: Exciton Binding Energy, Polarizability, and Field-Dependent Radiative Rates. , 2016, Nano letters.

[4]  Jung Ho Yu,et al.  Advances in the Colloidal Synthesis of Two-Dimensional Semiconductor Nanoribbons , 2013 .

[5]  Moonsub Shim,et al.  High efficiency and optical anisotropy in double-heterojunction nanorod light-emitting diodes. , 2015, ACS nano.

[6]  Giuseppe Gigli,et al.  Polarized light emitting diode by long-range nanorod self-assembling on a water surface. , 2009, ACS nano.

[7]  Whi Dong Kim,et al.  Origin of Shape-Dependent Fluorescence Polarization from CdSe Nanoplatelets , 2017 .

[8]  M. Shim,et al.  Double-Heterojunction Nanorod Light-Emitting Diodes with High Efficiencies at High Brightness Using Self-Assembled Monolayers , 2016 .

[9]  P. Lagoudakis,et al.  Wave function engineering in elongated semiconductor nanocrystals with heterogeneous carrier confinement. , 2005, Nano letters.

[10]  G. Rainò,et al.  Probing the wave function delocalization in CdSe/CdS dot-in-rod nanocrystals by time- and temperature-resolved spectroscopy. , 2011, ACS nano.

[11]  Ido Hadar,et al.  Band-gap engineering, optoelectronic properties and applications of colloidal heterostructured semiconductor nanorods , 2013 .

[12]  Vincent Loriette,et al.  Spectroscopy of single CdSe nanoplatelets. , 2012, ACS nano.

[13]  T. Lian,et al.  Quantum Confinement Theory of Auger-Assisted Biexciton Recombination Dynamics in Type-I and Quasi Type-II Quantum Dots , 2018, The Journal of Physical Chemistry C.

[14]  Zhenyu Yang,et al.  Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination , 2018 .

[15]  Shin‐Hyun Kim,et al.  Depletion-Mediated Interfacial Assembly of Semiconductor Nanorods. , 2019, Nano letters.

[16]  Richard H. Friend,et al.  Electroluminescence emission pattern of organic light-emitting diodes: Implications for device efficiency calculations , 2000 .

[17]  Jaehoon Lim,et al.  Nanostructured colloidal quantum dots for efficient electroluminescence devices , 2019, Korean Journal of Chemical Engineering.

[18]  J. Vela,et al.  Molecular control of the nanoscale: effect of phosphine-chalcogenide reactivity on CdS-CdSe nanocrystal composition and morphology. , 2012, ACS nano.

[19]  Yeonkyung Lee,et al.  The Role of Emission Layer Morphology on the Enhanced Performance of Light‐Emitting Diodes Based on Quantum Dot‐Semiconducting Polymer Hybrids , 2016 .

[20]  T. Lian,et al.  Enhanced multiple exciton dissociation from CdSe quantum rods: the effect of nanocrystal shape. , 2012, Journal of the American Chemical Society.

[21]  Andreas Kornowski,et al.  Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine-Trioctylphosphine Oxide-Trioctylphospine Mixture. , 2001, Nano letters.

[22]  Taeghwan Hyeon,et al.  Designed Assembly and Integration of Colloidal Nanocrystals for Device Applications , 2016, Advanced materials.

[23]  Savas Delikanli,et al.  Lateral Size-Dependent Spontaneous and Stimulated Emission Properties in Colloidal CdSe Nanoplatelets. , 2015, ACS nano.

[24]  Louis Brus,et al.  Chemical Synthesis and Luminescence Applications of Colloidal Semiconductor Quantum Dots. , 2017, Journal of the American Chemical Society.

[25]  Benoit Dubertret,et al.  Quasi‐2D Colloidal Semiconductor Nanoplatelets for Narrow Electroluminescence , 2014 .

[26]  Benoit Dubertret,et al.  Two-dimensional colloidal metal chalcogenides semiconductors: synthesis, spectroscopy, and applications. , 2015, Accounts of chemical research.

[27]  Whi Dong Kim,et al.  Colloidal Dual-Diameter and Core-Position-Controlled Core/Shell Cadmium Chalcogenide Nanorods. , 2017, ACS nano.

[28]  Hilmi Volkan Demir,et al.  Stacking in colloidal nanoplatelets: tuning excitonic properties. , 2014, ACS nano.

[29]  M. Bawendi,et al.  (CdSe)ZnS Core-Shell Quantum Dots - Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites , 1997 .

[30]  K. Sun,et al.  Blue quantum dot light emitting diodes with polyvinylpyrrolidone-doped electron transport layer , 2018, Organic Electronics.

[31]  Giulia Galli,et al.  The Effect of Organic Ligand Binding on the Growth of CdSe Nanoparticles Probed by Ab Initio Calculations , 2004 .

[32]  Whi Dong Kim,et al.  Self-organization of nanorods into ultra-long range two-dimensional monolayer end-to-end network. , 2015, Nano letters.

[33]  Yan Fu,et al.  Polyethylenimine Ethoxylated-Mediated All-Solution-Processed High-Performance Flexible Inverted Quantum Dot-Light-Emitting Device. , 2017, ACS nano.

[34]  Ting Xu,et al.  Self-assembly and applications of anisotropic nanomaterials: A review , 2015 .

[35]  Jaehoon Lim,et al.  Spectroscopic and Device Aspects of Nanocrystal Quantum Dots. , 2016, Chemical reviews.

[36]  Savas Delikanli,et al.  Nanocrystal light-emitting diodes based on type II nanoplatelets , 2018 .

[37]  K. Char,et al.  Highly Efficient Green‐Light‐Emitting Diodes Based on CdSe@ZnS Quantum Dots with a Chemical‐Composition Gradient , 2009 .

[38]  Hilmi Volkan Demir,et al.  CdSe/CdSe1–xTex Core/Crown Heteronanoplatelets: Tuning the Excitonic Properties without Changing the Thickness , 2017 .

[39]  T. Lian,et al.  Area- and Thickness-Dependent Biexciton Auger Recombination in Colloidal CdSe Nanoplatelets: Breaking the "Universal Volume Scaling Law". , 2017, Nano letters.

[40]  C. Murray,et al.  X-ray mapping of nanoparticle superlattice thin films. , 2014, ACS nano.

[41]  V. Wood,et al.  Origins of Low Quantum Efficiencies in Quantum Dot LEDs , 2013 .

[42]  Shuangyuan Zhang,et al.  Self-assembly of colloidal one-dimensional nanocrystals. , 2014, Chemical Society reviews.

[43]  R. Sandberg,et al.  Aspect ratio dependence of auger recombination and carrier multiplication in PbSe nanorods. , 2013, Nano letters.

[44]  Cherie R. Kagan,et al.  Smectic Nanorod Superlattices Assembled on Liquid Subphases: Structure, Orientation, Defects, and Optical Polarization , 2015 .

[45]  Yizheng Jin,et al.  High‐Performance, Solution‐Processed, and Insulating‐Layer‐Free Light‐Emitting Diodes Based on Colloidal Quantum Dots , 2018, Advanced materials.

[46]  Yongfang Li,et al.  Bright, multicoloured light-emitting diodes based on quantum dots , 2007 .

[47]  M. Terrones,et al.  The rise of two-dimensional materials. , 2015, Accounts of chemical research.

[48]  Wolfgang Brütting,et al.  Determination of molecular dipole orientation in doped fluorescent organic thin films by photoluminescence measurements , 2010 .

[49]  Jianfang Wang,et al.  A Chemical Approach To Break the Planar Configuration of Ag Nanocubes into Tunable Two-Dimensional Metasurfaces. , 2016, Nano letters.

[50]  Christian Mayr,et al.  Organic Light‐Emitting Diodes with 30% External Quantum Efficiency Based on a Horizontally Oriented Emitter , 2013 .

[51]  Weidong Yang,et al.  Linearly Polarized Emission from Colloidal Semiconductor Quantum Rods , 2001, Science.

[52]  Benoit Dubertret,et al.  Efficient Solution-Processed Nanoplatelet-Based Light-Emitting Diodes with High Operational Stability in Air. , 2018, Nano letters.

[53]  Jang‐Joo Kim,et al.  Controlling Emitting Dipole Orientation with Methyl Substituents on Main Ligand of Iridium Complexes for Highly Efficient Phosphorescent Organic Light‐Emitting Diodes , 2015 .

[54]  Jang‐Joo Kim,et al.  Design of Heteroleptic Ir Complexes with Horizontal Emitting Dipoles for Highly Efficient Organic Light-Emitting Diodes with an External Quantum Efficiency of 38% , 2016 .

[55]  A. Shabaev,et al.  1D Exciton Spectroscopy of Semiconductor Nanorods , 2004 .

[56]  J. Vela,et al.  "Giant" multishell CdSe nanocrystal quantum dots with suppressed blinking. , 2008, Journal of the American Chemical Society.

[57]  L. Manna,et al.  Assembly of colloidal semiconductor nanorods in solution by depletion attraction. , 2010, Nano letters.

[58]  Justin R. Caram,et al.  Slow-Injection Growth of Seeded CdSe/CdS Nanorods with Unity Fluorescence Quantum Yield and Complete Shell to Core Energy Transfer. , 2016, ACS nano.

[59]  Moungi G Bawendi,et al.  Alternating layer addition approach to CdSe/CdS core/shell quantum dots with near-unity quantum yield and high on-time fractions. , 2012, Chemical science.

[60]  J. I. Climente,et al.  Directed emission of CdSe nanoplatelets originating from strongly anisotropic 2D electronic structure. , 2017, Nature nanotechnology.

[61]  Jun Hyuk Chang,et al.  Colloidal Spherical Quantum Wells with Near-Unity Photoluminescence Quantum Yield and Suppressed Blinking. , 2016, ACS nano.

[62]  Y. Do,et al.  Enhanced Light Extraction from Organic Light‐Emitting Diodes with 2D SiO2/SiNx Photonic Crystals , 2003 .

[63]  Benoit Dubertret,et al.  Type-II CdSe/CdTe core/crown semiconductor nanoplatelets. , 2014, Journal of the American Chemical Society.

[64]  Jang‐Joo Kim,et al.  Crystal Organic Light‐Emitting Diodes with Perfectly Oriented Non‐Doped Pt‐Based Emitting Layer , 2016, Advanced materials.

[65]  Lin-wang Wang,et al.  Electronic structures of the CdSe/CdS core-shell nanorods. , 2010, ACS nano.

[66]  Whi Dong Kim,et al.  Stacking of Colloidal CdSe Nanoplatelets into Twisted Ribbon Superstructures: Origin of Twisting and Its Implication in Optical Properties , 2019, The Journal of Physical Chemistry C.

[67]  Stephen R. Forrest,et al.  Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays , 2002 .

[68]  B. Dubertret,et al.  Colloidal nanoplatelets with two-dimensional electronic structure. , 2011, Nature materials.

[69]  A. Rogach,et al.  Combination of Photoinduced Alignment and Self-Assembly to Realize Polarized Emission from Ordered Semiconductor Nanorods. , 2015, ACS nano.

[70]  Arunava Gupta,et al.  Routes to self-assembly of nanorods , 2013 .

[71]  Cherie R. Kagan,et al.  Self-Organization of CdSe Nanocrystallites into Three-Dimensional Quantum Dot Superlattices , 1995, Science.

[72]  Myeongjin Park,et al.  Influence of Shell Thickness on the Performance of Light‐Emitting Devices Based on CdSe/Zn1‐XCdXS Core/Shell Heterostructured Quantum Dots , 2014, Advanced materials.

[73]  Benoit Dubertret,et al.  Core/shell colloidal semiconductor nanoplatelets. , 2012, Journal of the American Chemical Society.

[74]  Lazaro A. Padilha,et al.  Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes , 2013, Nature Communications.

[75]  Benoit Dubertret,et al.  Spectroscopy of colloidal semiconductor core/shell nanoplatelets with high quantum yield. , 2013, Nano letters.

[76]  Liberato Manna,et al.  Controlled growth of tetrapod-branched inorganic nanocrystals , 2003, Nature materials.

[77]  Shin‐Tson Wu,et al.  P‐82: Doubling the Light Out Coupling Efficiency of Quantum Dot Light Emitting Diodes , 2015 .

[78]  P. Yang,et al.  Langmuir-Blodgett nanorod assembly. , 2001, Journal of the American Chemical Society.

[79]  Eva De Leo,et al.  Direct Patterning of Colloidal Quantum-Dot Thin Films for Enhanced and Spectrally Selective Out-Coupling of Emission , 2016, Nano letters.

[80]  J. Vela,et al.  Expanding the one-dimensional CdS-CdSe composition landscape: axially anisotropic CdS 1-x Se x nanorods. , 2011, ACS nano.

[81]  Ken-Tsung Wong,et al.  Sky‐Blue Organic Light Emitting Diode with 37% External Quantum Efficiency Using Thermally Activated Delayed Fluorescence from Spiroacridine‐Triazine Hybrid , 2016, Advanced materials.

[82]  J. A. E. Wasey,et al.  Efficiency of spontaneous emission from planar microcavities , 2000 .

[83]  Haitao Liu,et al.  Electric-field-assisted assembly of perpendicularly oriented nanorod superlattices. , 2006, Nano letters.

[84]  Yongwoo Kwon,et al.  Over 40 cd/A efficient green quantum dot electroluminescent device comprising uniquely large-sized quantum dots. , 2014, ACS nano.

[85]  G. Wiederrecht,et al.  Anisotropic Photoluminescence from Isotropic Optical Transition Dipoles in Semiconductor Nanoplatelets. , 2018, Nano letters.

[86]  Moonsub Shim,et al.  Double-heterojunction nanorods , 2014, Nature Communications.

[87]  Benoit Dubertret,et al.  Self-assembly of CdSe nanoplatelets into giant micrometer-scale needles emitting polarized light. , 2014, Nano letters.

[88]  Jörg J Schneider,et al.  Assembly of one dimensional inorganic nanostructures into functional 2D and 3D architectures. Synthesis, arrangement and functionality. , 2012, Chemical Society reviews.

[89]  Jang‐Joo Kim,et al.  Origin and Control of Orientation of Phosphorescent and TADF Dyes for High‐Efficiency OLEDs , 2018, Advanced materials.

[90]  T. Russell,et al.  Self-assembly of nanomaterials at fluid interfaces , 2016, The European physical journal. E, Soft matter.

[91]  L. Manna,et al.  Dots in rods as polarized single photon sources , 2010 .

[92]  Weidong Yang,et al.  Shape control of CdSe nanocrystals , 2000, Nature.

[93]  U. Banin,et al.  Polarization Properties of Semiconductor Nanorod Heterostructures: From Single Particles to the Ensemble. , 2013, The journal of physical chemistry letters.

[94]  U. Banin,et al.  Multiexciton engineering in seeded core/shell nanorods: transfer from type-I to quasi-type-II regimes. , 2009, Nano letters.

[95]  M. Frimmer,et al.  Reduced Auger recombination in single CdSe/CdS nanorods by one-dimensional electron delocalization. , 2013, Nano letters.

[96]  Chung-Chih Wu,et al.  Enhancing light outcoupling of organic light-emitting devices by locating emitters around the second antinode of the reflective metal electrode , 2006 .

[97]  V. Klimov,et al.  Spectroscopic insights into the performance of quantum dot light-emitting diodes , 2013 .

[98]  Piernicola Spinicelli,et al.  Efficient exciton concentrators built from colloidal core/crown CdSe/CdS semiconductor nanoplatelets. , 2014, Nano letters.

[99]  J. Schins,et al.  Bimolecular Auger Recombination of Electron–Hole Pairs in Two-Dimensional CdSe and CdSe/CdZnS Core/Shell Nanoplatelets , 2013 .

[100]  Liangsheng Liao,et al.  Polymer as an Additive in the Emitting Layer for High-Performance Quantum Dot Light-Emitting Diodes. , 2017, ACS applied materials & interfaces.

[101]  Jun Hyuk Chang,et al.  Ligand-Asymmetric Janus Quantum Dots for Efficient Blue-Quantum Dot Light-Emitting Diodes. , 2018, ACS applied materials & interfaces.

[102]  Dong-Kyun Ko,et al.  Studies of liquid crystalline self-assembly of GdF₃ nanoplates by in-plane, out-of-plane SAXS. , 2011, ACS nano.

[103]  G. Wiederrecht,et al.  Size-Dependent Biexciton Quantum Yields and Carrier Dynamics of Quasi-Two-Dimensional Core/Shell Nanoplatelets. , 2017, ACS nano.

[104]  W. Tisdale,et al.  Colloidal Halide Perovskite Nanoplatelets: An Exciting New Class of Semiconductor Nanomaterials , 2017 .

[105]  Christopher B. Murray,et al.  Binary nanocrystal superlattice membranes self-assembled at the liquid–air interface , 2010, Nature.

[106]  Whi Dong Kim,et al.  Controlling Ion-Exchange Balance and Morphology in Cation Exchange from Cu3–xP Nanoplatelets into InP Crystals , 2019, Chemistry of Materials.

[107]  N. Kotov,et al.  Nanoparticle self-assembly: A loop of two rods. , 2014, Nature materials.

[108]  Jaehoon Lim,et al.  Droop-Free Colloidal Quantum Dot Light-Emitting Diodes. , 2018, Nano letters.

[109]  H. V. D. van der Zant,et al.  Unity quantum yield of photogenerated charges and band-like transport in quantum-dot solids. , 2011, Nature nanotechnology.

[110]  E. Rabani,et al.  Semiconductor Seeded Nanorods with Graded Composition Exhibiting High Quantum-Yield, High Polarization, and Minimal Blinking. , 2017, Nano letters.

[111]  B. Dubertret,et al.  Continuous transition from 3D to 1D confinement observed during the formation of CdSe nanoplatelets. , 2011, Journal of the American Chemical Society.

[112]  Benoit Dubertret,et al.  Flat Colloidal Semiconductor Nanoplatelets , 2013 .

[113]  Hui Zhang,et al.  Picosecond energy transfer and multiexciton transfer outpaces Auger recombination in binary CdSe nanoplatelet solids. , 2015, Nature materials.

[114]  M. Steigerwald,et al.  Ligand Control of Growth, Morphology, and Capping Structure of Colloidal CdSe Nanorods , 2007 .

[115]  Jun Hyuk Chang,et al.  Unraveling the Origin of Operational Instability of Quantum Dot Based Light-Emitting Diodes. , 2018, ACS nano.

[116]  A. Alivisatos,et al.  Symmetry of Annealed Wurtzite CdSe Nanocrystals: Assignment to the C3v Point Group , 1995 .

[117]  A. Rogach,et al.  Narrow bandgap colloidal metal chalcogenide quantum dots: synthetic methods, heterostructures, assemblies, electronic and infrared optical properties. , 2013, Chemical Society reviews.

[118]  Sougata Pal,et al.  Sub-Picosecond Auger-Mediated Hole-Trapping Dynamics in Colloidal CdSe/CdS Core/Shell Nanoplatelets. , 2016, ACS nano.

[119]  Kwon-Hyeon Kim,et al.  A Fluorescent Organic Light‐Emitting Diode with 30% External Quantum Efficiency , 2014, Advanced materials.

[120]  Francesco Galeotti,et al.  High-Efficiency All-Solution-Processed Light-Emitting Diodes Based on Anisotropic Colloidal Heterostructures with Polar Polymer Injecting Layers. , 2015, Nano letters.

[121]  Dmitri V Talapin,et al.  PbSe Nanocrystal Solids for n- and p-Channel Thin Film Field-Effect Transistors , 2005, Science.

[122]  Wolfgang Brütting,et al.  Increased light outcoupling efficiency in dye-doped small molecule organic light-emitting diodes with horizontally oriented emitters , 2011 .

[123]  Hilmi Volkan Demir,et al.  Platelet‐in‐Box Colloidal Quantum Wells: CdSe/CdS@CdS Core/Crown@Shell Heteronanoplatelets , 2016 .

[124]  K. Jensen,et al.  Density functional theory study of ligand binding on CdSe (0001), (0001), and (1120) single crystal relaxed and reconstructed surfaces: implications for nanocrystalline growth. , 2006, The journal of physical chemistry. B.

[125]  M. Nasilowski,et al.  Two-Dimensional Colloidal Nanocrystals. , 2016, Chemical reviews.

[126]  Taejong Paik,et al.  Binary and ternary superlattices self-assembled from colloidal nanodisks and nanorods. , 2015, Journal of the American Chemical Society.

[127]  Oliver Benson,et al.  Highly Emissive Colloidal CdSe/CdS Heterostructures of Mixed Dimensionality , 2003 .

[128]  Matt Law,et al.  Structural, optical, and electrical properties of self-assembled films of PbSe nanocrystals treated with 1,2-ethanedithiol. , 2008, ACS nano.

[129]  Yizheng Jin,et al.  Solution-processed, high-performance light-emitting diodes based on quantum dots , 2014, Nature.

[130]  Whi Dong Kim,et al.  Controlled Vortex Formation and Facilitated Energy Transfer within Aggregates of Colloidal CdS Nanorods , 2015 .

[131]  Eugenia Kumacheva,et al.  Self-assembly of inorganic nanorods. , 2011, Chemical Society reviews.

[132]  J. Cheon,et al.  Controlled synthesis of multi-armed CdS nanorod architectures using monosurfactant system. , 2001, Journal of the American Chemical Society.

[133]  T. Nann,et al.  Shape control of II-VI semiconductor nanomaterials. , 2006, Small.

[134]  I. Moreels,et al.  Colloidal nanoplatelets: Energy transfer is speeded up in 2D. , 2015, Nature materials.

[135]  Monica Nadasan,et al.  Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach. , 2007, Nano letters.

[136]  A. Baranov,et al.  Cadmium Chalcogenide Nano-Heteroplatelets: Creating Advanced Nanostructured Materials by Shell Growth, Substitution, and Attachment. , 2017, Small.

[137]  Byeongdu Lee,et al.  Assessment of Anisotropic Semiconductor Nanorod and Nanoplatelet Heterostructures with Polarized Emission for Liquid Crystal Display Technology. , 2016, ACS nano.

[138]  N. Makarov,et al.  Effect of Interfacial Alloying versus "Volume Scaling" on Auger Recombination in Compositionally Graded Semiconductor Quantum Dots. , 2017, Nano letters.

[139]  D. Yokoyama Molecular orientation in small-molecule organic light-emitting diodes , 2011 .

[140]  Zhiya Dang,et al.  Synthesis of Air-Stable CdSe/ZnS Core–Shell Nanoplatelets with Tunable Emission Wavelength , 2017 .

[141]  W. Tisdale,et al.  CdSe Nanoplatelet Films with Controlled Orientation of their Transition Dipole Moment. , 2017, Nano letters.

[142]  Benoit Dubertret,et al.  Quasi 2D colloidal CdSe platelets with thicknesses controlled at the atomic level. , 2008, Journal of the American Chemical Society.

[143]  R. Krahne,et al.  Enhancing the Performance of CdSe/CdS Dot-in-Rod Light-Emitting Diodes via Surface Ligand Modification. , 2018, ACS applied materials & interfaces.

[144]  Xiangfeng Duan,et al.  Highly Polarized Photoluminescence and Photodetection from Single Indium Phosphide Nanowires , 2001, Science.

[145]  Dmitri V Talapin,et al.  Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rod and tetrapod morphologies. , 2007, Nano letters.