A novel encryption scheme for high-contrast image data in the Fresnelet domain

In this paper, a unique and more distinctive encryption algorithm is proposed. This is based on the complexity of highly nonlinear S box in Flesnelet domain. The nonlinear pattern is transformed further to enhance the confusion in the dummy data using Fresnelet technique. The security level of the encrypted image boosts using the algebra of Galois field in Fresnelet domain. At first level, the Fresnelet transform is used to propagate the given information with desired wavelength at specified distance. It decomposes given secret data into four complex subbands. These complex sub-bands are separated into two components of real subband data and imaginary subband data. At second level, the net subband data, produced at the first level, is deteriorated to non-linear diffused pattern using the unique S-box defined on the Galois field F28. In the diffusion process, the permuted image is substituted via dynamic algebraic S-box substitution. We prove through various analysis techniques that the proposed scheme enhances the cipher security level, extensively.

[1]  Xingyuan Wang,et al.  A novel chaotic block image encryption algorithm based on dynamic random growth technique , 2015 .

[2]  Zahid Mahmood,et al.  Blind data hiding technique using the Fresnelet transform , 2015, SpringerPlus.

[3]  Mitsuru Matsui,et al.  Linear Cryptanalysis Method for DES Cipher , 1994, EUROCRYPT.

[4]  Tariq Shah,et al.  A group theoretic approach to construct cryptographically strong substitution boxes , 2012, Neural Computing and Applications.

[6]  Eli Biham,et al.  Differential cryptanalysis of DES-like cryptosystems , 1990, Journal of Cryptology.

[7]  Construction of New S-Boxes Over Finite Field and Their Application to Watermarking , 2012 .

[8]  Cunsheng Ding,et al.  Nonlinearities of S-boxes , 2007, Finite Fields Their Appl..

[9]  Shabieh Farwa,et al.  A highly nonlinear S-box based on a fractional linear transformation , 2016, SpringerPlus.

[10]  Syed Rameez Naqvi,et al.  Reversible integer wavelet transform for blind image hiding method , 2017, PloS one.

[11]  Barry M. G. Cheetham,et al.  Inverted Wrap-Around Limiting with Bussgang Noise Cancellation Receiver for OFDM Signals , 2018, Circuits Syst. Signal Process..

[12]  Tanzila Saba,et al.  A novel classification scheme to decline the mortality rate among women due to breast tumor , 2018, Microscopy research and technique.

[13]  Tariq Shah,et al.  A Novel Image Encryption Based on Algebraic S-box and Arnold Transform , 2017 .

[14]  Y. Bashir,et al.  On Forgotten Topological Indices of Some Dendrimers Structure , 2017, Molecules.

[15]  Muhammad Sharif,et al.  Bi-model processing for early detection of breast tumor in CAD system , 2017 .

[16]  Jan Sher Khan,et al.  A New Image Encryption Scheme Based on Dynamic S-Boxes and Chaotic Maps , 2016 .

[17]  Zahid Mahmood,et al.  A REVIEW ON STATE-OF-THE-ART FACE RECOGNITION APPROACHES , 2017 .

[18]  Muhammad Nazeer,et al.  Digital image watermarking using partial pivoting lower and upper triangular decomposition into the wavelet domain , 2015, IET Image Process..

[19]  Lin Teng,et al.  A novel colour image encryption algorithm based on chaos , 2012, Signal Process..

[20]  Anthony Kleerekoper,et al.  Equation-Method for correcting clipping errors in OFDM signals , 2016, SpringerPlus.

[21]  Xing-yuan Wang,et al.  A novel image encryption algorithm based on dynamic S-boxes constructed by chaos , 2013, Nonlinear Dynamics.

[22]  Tariq Shah,et al.  An Image Encryption Technique based on Chaotic S-Box and Arnold Transform , 2017 .