QUANTUM HOLONOMIES FOR QUANTUM COMPUTING

Holonomic Quantum Computation (HQC) is an all-geometrical approach to quantum information processing. In the HQC strategy information is encoded in degenerate eigen-spaces of a parametric family of Hamiltonians. The computational network of unitary quantum gates is realized by driving adiabatically the Hamiltonian parameters along loops in a control manifold. By properly designing such loops the nontrivial curvature of the underlying bundle geometry gives rise to unitary transformations i.e., holonomies that implement the desired unitary transformations. Conditions necessary for universal QC are stated in terms of the curvature associated to the non-abelian gauge potential (connection) over the control manifold. In view of their geometrical nature the holonomic gates are robust against several kind of perturbations and imperfections. This fact along with the adiabatic fashion in which gates are performed makes in principle HQC an appealing way towards universal fault-tolerant QC.

[1]  Seth Lloyd,et al.  Quantum Computation with Abelian Anyons , 2000, Quantum Inf. Process..

[2]  M. Freedman,et al.  Simulation of Topological Field Theories¶by Quantum Computers , 2000, quant-ph/0001071.

[3]  Vlatko Vedral,et al.  Geometric quantum computation , 2000, quant-ph/0004015.

[4]  J. Pachos Quantum Computation by Geometrical Means , 2000, quant-ph/0003150.

[5]  Jonathan A. Jones,et al.  Geometric quantum computation using nuclear magnetic resonance , 2000, Nature.

[6]  J. Pachos,et al.  Optical Holonomic Quantum Computer , 1999, quant-ph/9912093.

[7]  Charles H. Bennett,et al.  Quantum information and computation , 1995, Nature.

[8]  K. Fujii Note on coherent states and adiabatic connections, curvatures , 1999, quant-ph/9910069.

[9]  P. Zanardi,et al.  Holonomic quantum computation , 1999, quant-ph/9904011.

[10]  E. Knill,et al.  Dynamical Decoupling of Open Quantum Systems , 1998, Physical Review Letters.

[11]  D. Vitali,et al.  Using parity kicks for decoherence control , 1998, quant-ph/9808055.

[12]  P. Zanardi Symmetrizing Evolutions , 1998, quant-ph/9809064.

[13]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[14]  King,et al.  Generation of nonclassical motional states of a trapped atom. , 1996, Physical review letters.

[15]  D. Deutsch,et al.  Universality in quantum computation , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[16]  Blatt,et al.  "Dark" squeezed states of the motion of a trapped ion. , 1993, Physical review letters.

[17]  Carmichael,et al.  Suppression of fluorescence in a lossless cavity. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[18]  M. Nakahara Geometry, Topology and Physics , 2018 .

[19]  Klauder,et al.  SU(2) and SU(1,1) interferometers. , 1986, Physical review. A, General physics.

[20]  Frank Wilczek,et al.  Appearance of Gauge Structure in Simple Dynamical Systems , 1984 .

[21]  W. J. M. A. Hochstenbach A note on coherent states , 1981 .

[22]  Tai Tsun Wu,et al.  Concept of Nonintegrable Phase Factors and Global Formulation of Gauge Fields , 1975 .

[23]  A. Sur,et al.  Spin dynamics for the one-dimensional XY model at infinite temperature , 1975 .