A self-calibrating multicomponent force/torque measuring system

A multi-component self-calibrating force and torque sensor is presented. In this system, the principle of a Kibble balance is adapted for the traceable force and torque measurement in three orthogonal directions. The system has two operating modes: the velocity mode and the force/torque sensing mode. In the velocity mode, the calibration of the sensor is performed, while in the force/torque sensing mode, forces and torques are measured by using the principle of the electromagnetic force compensation. Details about the system are provided, with the main components of the sensor and a description of the operational procedure. A prototype of the system is currently being implemented for measuring forces and torques in a range of ±2 N and ±0,1 Nm respectively. A maximal relative expanded measurement uncertainty (k=2) of 10·10-5 is expected for the force and torque measurements.

[1]  Dirk Röske,et al.  Metrological characterization of a 2 kN · m torque standard machine for superposition with axial forces up to 1 MN , 2016 .

[2]  P A Parker,et al.  A Single-Vector Force Calibration Method Featuring the Modern Design of Experiments , 2001 .

[3]  Perry Y. Li,et al.  Determination of Surgical Robot Tool Force Requirements Through Tissue Manipulation and Suture Force Measurement , 2011 .

[4]  D. B. Newell,et al.  Measurement of the Planck constant at the National Institute of Standards and Technology from 2015 to 2017 , 2017, 1708.02473.

[5]  Eberhard Manske,et al.  Multi-component force measurement in micromachining , 2017 .

[6]  Joseph H. Solomon,et al.  Biomechanical models for radial distance determination by the rat vibrissal system. , 2007, Journal of neurophysiology.

[7]  Peter A. Parker,et al.  Uncertainty Analysis of the Single-Vector Force Balance Calibration System , 2002 .

[8]  Gab-Soon Kim The development of a six-component force/moment sensor testing machine and evaluation of its uncertainty , 2000 .

[9]  Shigeyuki Shimachi,et al.  Contact Force Measurement of Instruments for Force-Feedback on a Surgical Robot: Acceleration Force Cancellations Based on Acceleration Sensor Readings , 2005, MICCAI.

[10]  Rainer Tutsch,et al.  Measurement uncertainty evaluation of a hexapod-structured calibration device for multi-component force and moment sensors , 2017 .

[11]  Stephan Schlamminger,et al.  Design of the Permanent-Magnet System for NIST-4 , 2013, IEEE Transactions on Instrumentation and Measurement.

[12]  Falko Hilbrunner,et al.  Parameterization and optimisation of EMC balances based on the frequency response of the impedance , 2014 .

[13]  A. Thess,et al.  Lorentz force velocimetry. , 2006, Physical review letters.

[14]  S Schlamminger,et al.  Invited Article: A precise instrument to determine the Planck constant, and the future kilogram , 2016, The Review of scientific instruments.

[15]  Ilko Rahneberg,et al.  Wattwaage mit Hebelübersetzung auf Basis eines kommerziellen EMK-Wägesystems , 2017 .

[16]  B. Korutlu,et al.  Preliminary Planck constant measurements via UME oscillating magnet Kibble balance , 2018, 1801.08392.

[17]  Jan Schleichert Entwicklung und Untersuchung von Mehrkomponentensensoren für Kraft und Drehmoment , 2016 .

[18]  Falko Hilbrunner,et al.  HIGH PRECISSION OPTICAL POSITION SENSOR FOR ELECTROMAGNETIC FORCE COMPENSATED BALANCES , 2010 .

[19]  Matthias Carlstedt,et al.  Dynamische Charakterisierung eines Dreikomponenten Kraftsensors mit Hilfe eines Lorentzkraft-Lastwechslers , 2016 .

[20]  C. Sutton An oscillatory dynamic mode for a watt balance , 2009 .

[21]  Stephan Schlamminger,et al.  The watt or Kibble balance: a technique for implementing the new SI definition of the unit of mass , 2016, Metrologia.

[22]  Joachim Steigenberger,et al.  Object contour scanning using elastically supported technical vibrissae , 2018 .

[23]  F. Seifert,et al.  Coil motion effects in watt balances: a theoretical check , 2016 .

[24]  R. Davis What Is a Kilogram in the Revised International System of Units (SI) , 2015 .

[25]  Jan Schleichert,et al.  Mehrkomponenten-Kraft- und -Drehmomentsensor nach dem Prinzip der elektromagnetischen Kompensation , 2016 .