V5S8–graphite hybrid nanosheets as a high rate-capacity and stable anode material for sodium-ion batteries

Here we report chemically-exfoliated V5S8 and graphite hybrid nanosheets (ce-V5S8–C) as a novel anode material for sodium-ion batteries (SIBs). It exhibits much improved sodiation capacity, rate capability, reversibility and stability compared to other major SIB anode materials.

[1]  Nozaki,et al.  Electron correlation, d-band formation, and magnetism in V5S8: Photoemission-spectroscopy study. , 1991, Physical review. B, Condensed matter.

[2]  H. Ebert,et al.  Electronic and magnetic properties of , 1998 .

[3]  Sylvie Grugeon,et al.  Particle Size Effects on the Electrochemical Performance of Copper Oxides toward Lithium , 2001 .

[4]  Y. Qian,et al.  Direct sulfidization synthesis of high-quality binary sulfides (WS2, MoS2, and V5S8) from the respective oxides , 2004 .

[5]  M. Delville,et al.  Entrapment of poly(3,4-ethylenedioxythiophene) between VS2 layers to form a new organic–inorganic intercalative nanocomposite , 2005 .

[6]  Wangxing Li,et al.  Electrochemical intercalation of potassium into graphite in KF melt , 2010 .

[7]  Hui Xiong,et al.  Amorphous TiO2 Nanotube Anode for Rechargeable Sodium Ion Batteries , 2011 .

[8]  Kazuma Gotoh,et al.  Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard‐Carbon Electrodes and Application to Na‐Ion Batteries , 2011 .

[9]  Linghui Yu,et al.  Hollow Carbon Nanospheres with Superior Rate Capability for Sodium‐Based Batteries , 2012 .

[10]  Jun Liu,et al.  Sodium ion insertion in hollow carbon nanowires for battery applications. , 2012, Nano letters.

[11]  Wei Wang,et al.  High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications. , 2012, Chemical communications.

[12]  Teófilo Rojo,et al.  Na-ion batteries, recent advances and present challenges to become low cost energy storage systems , 2012 .

[13]  Laure Monconduit,et al.  Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. , 2012, Journal of the American Chemical Society.

[14]  Hideki Nakayama,et al.  First-principles study of alkali metal-graphite intercalation compounds , 2012 .

[15]  Yuyan Shao,et al.  Probing the failure mechanism of SnO2 nanowires for sodium-ion batteries. , 2013, Nano letters.

[16]  J. Tarascon,et al.  A new room temperature and solvent free carbon coating procedure for battery electrode materials , 2013 .

[17]  Zhongfang Chen,et al.  Metallic VS2 Monolayer: A Promising 2D Anode Material for Lithium Ion Batteries , 2013 .

[18]  Lixia Yuan,et al.  Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance , 2013 .

[19]  Fayuan Wu,et al.  Sb–C nanofibers with long cycle life as an anode material for high-performance sodium-ion batteries , 2014 .

[20]  S. Dou,et al.  WS₂@graphene nanocomposites as anode materials for Na-ion batteries with enhanced electrochemical performances. , 2014, Chemical communications.

[21]  David Wexler,et al.  High-performance sodium-ion batteries and sodium-ion pseudocapacitors based on MoS(2) /graphene composites. , 2014, Chemistry.

[22]  D. Mitlin,et al.  Anodes for sodium ion batteries based on tin-germanium-antimony alloys. , 2014, ACS nano.

[23]  P. Adelhelm,et al.  FeV2S4 as a high capacity electrode material for sodium-ion batteries. , 2015, Chemical communications.

[24]  A. Manthiram,et al.  High-performance Na2Ti2O5 nanowire arrays coated with VS2 nanosheets for sodium-ion storage , 2015 .

[25]  J. Tarascon,et al.  Towards greener and more sustainable batteries for electrical energy storage. , 2015, Nature chemistry.

[26]  L. Croguennec,et al.  Recent achievements on inorganic electrode materials for lithium-ion batteries. , 2015, Journal of the American Chemical Society.

[27]  Yousung Jung,et al.  Two-Dimensional Transition Metal Dichalcogenide Monolayers as Promising Sodium Ion Battery Anodes , 2015 .

[28]  Linda F Nazar,et al.  The emerging chemistry of sodium ion batteries for electrochemical energy storage. , 2015, Angewandte Chemie.

[29]  L. Mai,et al.  Vanadium Sulfide on Reduced Graphene Oxide Layer as a Promising Anode for Sodium Ion Battery. , 2015, ACS applied materials & interfaces.

[30]  Teófilo Rojo,et al.  A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries , 2015 .

[31]  Sodium-Ion Batteries: Carbon Quantum Dots and Their Derivative 3D Porous Carbon Frameworks for Sodium-Ion Batteries with Ultralong Cycle Life (Adv. Mater. 47/2015). , 2015, Advanced materials.

[32]  Guoxiu Wang,et al.  MoS2/Graphene Composite Anodes with Enhanced Performance for Sodium‐Ion Batteries: The Role of the Two‐Dimensional Heterointerface , 2015 .

[33]  Y. Kang,et al.  Sodium ion storage properties of WS₂-decorated three-dimensional reduced graphene oxide microspheres. , 2015, Nanoscale.

[34]  Jiaqiang Xu,et al.  Facile Hydrothermal Synthesis of VS2/Graphene Nanocomposites with Superior High-Rate Capability as Lithium-Ion Battery Cathodes. , 2015, ACS applied materials & interfaces.

[35]  Jung-Kul Lee,et al.  3D MoS2–Graphene Microspheres Consisting of Multiple Nanospheres with Superior Sodium Ion Storage Properties , 2015 .

[36]  Adam P. Cohn,et al.  Tungsten diselenide (WSe2) as a high capacity, low overpotential conversion electrode for sodium ion batteries , 2015 .

[37]  Xiulin Fan,et al.  Ether-based electrolyte enabled Na/FeS2 rechargeable batteries , 2015 .

[38]  Fanglin Chen,et al.  In situ fabrication of CoFe alloy nanoparticles structured (Pr0.4Sr0.6)3(Fe0.85Nb0.15)2O7 ceramic anode for direct hydrocarbon solid oxide fuel cells , 2015 .

[39]  Yan Yu,et al.  Peapod‐Like Carbon‐Encapsulated Cobalt Chalcogenide Nanowires as Cycle‐Stable and High‐Rate Materials for Sodium‐Ion Anodes , 2016, Advanced materials.

[40]  Chenghao Yang,et al.  In situ X-ray diffraction characterization of NbS2 nanosheets as the anode material for sodium ion batteries , 2016 .

[41]  Seung Yeon Lee,et al.  First Introduction of NiSe2 to Anode Material for Sodium-Ion Batteries: A Hybrid of Graphene-Wrapped NiSe2/C Porous Nanofiber , 2016, Scientific Reports.

[42]  G. Cui,et al.  Nickel Disulfide-Graphene Nanosheets Composites with Improved Electrochemical Performance for Sodium Ion Battery. , 2016, ACS applied materials & interfaces.

[43]  Guoxiu Wang,et al.  Improved Electrochemical Performance of Na‐Ion Batteries in Ether‐Based Electrolytes: A Case Study of ZnS Nanospheres , 2016 .

[44]  Yong-Mook Kang,et al.  Urchin‐Like CoSe2 as a High‐Performance Anode Material for Sodium‐Ion Batteries , 2016 .

[45]  Y. Kang,et al.  Fullerene-like MoSe2 nanoparticles-embedded CNT balls with excellent structural stability for highly reversible sodium-ion storage. , 2016, Nanoscale.

[46]  Peirong Li,et al.  TiS2 nanoplates: A high-rate and stable electrode material for sodium ion batteries , 2016 .

[47]  Y. Gogotsi,et al.  MoS2 Nanosheets Vertically Aligned on Carbon Paper: A Freestanding Electrode for Highly Reversible Sodium‐Ion Batteries , 2016 .

[48]  Xin-bo Zhang,et al.  Integrating 3D Flower-Like Hierarchical Cu2NiSnS4 with Reduced Graphene Oxide as Advanced Anode Materials for Na-Ion Batteries. , 2016, ACS applied materials & interfaces.

[49]  Jun Chen,et al.  Facile synthesis and electrochemical sodium storage of CoS2 micro/nano-structures , 2016, Nano Research.

[50]  Y. Kang,et al.  One-Pot Synthesis of CoSex -rGO Composite Powders by Spray Pyrolysis and Their Application as Anode Material for Sodium-Ion Batteries. , 2016, Chemistry.