Scalable hierarchical PDE sampler for generating spatially correlated random fields using nonmatching meshes

This work describes a domain embedding technique between two non-matching meshes used for generating realizations of spatially correlated random fields with applications to large-scale sampling-based uncertainty quantification. The goal is to apply the multilevel Monte Carlo (MLMC) method for the quantification of output uncertainties of PDEs with random input coefficients on general, unstructured computational domains. We propose a highly scalable, hierarchical sampling method to generate realizations of a Gaussian random field on a given unstructured mesh by solving a reaction-diffusion PDE with a stochastic right-hand side. The stochastic PDE is discretized using the mixed finite element method on an embedded domain with a structured mesh, and then the solution is projected onto the unstructured mesh. This work describes implementation details on how to efficiently transfer data from the structured and unstructured meshes at coarse levels, assuming this can be done efficiently on the finest level. We investigate the efficiency and parallel scalability of the technique for the scalable generation of Gaussian random fields in three dimensions. An application of the MLMC method is presented for quantifying uncertainties of subsurface flow problems. We demonstrate the scalability of the sampling method with non-matching mesh embedding, coupled with a parallel forward model problem solver, for large-scale 3D MLMC simulations with up to $1.9\cdot 10^9$ unknowns.

[1]  J. P. Delhomme,et al.  Spatial variability and uncertainty in groundwater flow parameters: A geostatistical approach , 1979 .

[2]  Andrew M. Stuart,et al.  Inverse problems: A Bayesian perspective , 2010, Acta Numerica.

[3]  James Martin,et al.  A Computational Framework for Infinite-Dimensional Bayesian Inverse Problems Part I: The Linearized Case, with Application to Global Seismic Inversion , 2013, SIAM J. Sci. Comput..

[4]  Panayot S. Vassilevski,et al.  A Multilevel, Hierarchical Sampling Technique for Spatially Correlated Random Fields , 2017, SIAM J. Sci. Comput..

[5]  Rolf Krause,et al.  A Parallel Approach to the Variational Transfer of Discrete Fields between Arbitrarily Distributed Unstructured Finite Element Meshes , 2016, SIAM J. Sci. Comput..

[6]  Elisabeth Ullmann,et al.  Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients , 2012, Numerische Mathematik.

[7]  Martin J. Gander,et al.  An Algorithm for Non-Matching Grid Projections with Linear Complexity , 2009 .

[8]  Rolf Stenberg,et al.  The multi-level Monte Carlo finite element method for a stochastic Brinkman Problem , 2013, Numerische Mathematik.

[9]  H. Rue,et al.  An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach , 2011 .

[10]  Finn Lindgren,et al.  Bayesian Spatial Modelling with R-INLA , 2015 .

[11]  Heiko Bauke Tina's Random Number Generator Library , 2014 .

[12]  Elisabeth Ullmann,et al.  Mixed finite element analysis of lognormal diffusion and multilevel Monte Carlo methods , 2013, 1312.6047.

[13]  M. V. Tretyakov,et al.  A Block Circulant Embedding Method for Simulation of Stationary Gaussian Random Fields on Block-regular Grids , 2014, 1411.1552.

[14]  Panayot S. Vassilevski,et al.  Multilevel Techniques Lead to Accurate Numerical Upscaling and Scalable Robust Solvers for Reservoir Simulation , 2015, ANSS 2015.

[15]  K. A. Cliffe,et al.  Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients , 2011, Comput. Vis. Sci..

[16]  Andrea Barth,et al.  Multi-level Monte Carlo Finite Element method for elliptic PDEs with stochastic coefficients , 2011, Numerische Mathematik.

[17]  Panayot S. Vassilevski,et al.  Nonlinear multigrid solvers exploiting AMGe coarse spaces with approximation properties , 2018, J. Comput. Appl. Math..

[18]  C. R. Dietrich,et al.  Fast and Exact Simulation of Stationary Gaussian Processes through Circulant Embedding of the Covariance Matrix , 1997, SIAM J. Sci. Comput..

[19]  Roberto Cavoretto,et al.  OpenCL Based Parallel Algorithm for RBF-PUM Interpolation , 2018, J. Sci. Comput..

[20]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..

[21]  Panayot S. Vassilevski,et al.  Element agglomeration coarse Raviart-Thomas spaces with improved approximation properties , 2012, Numer. Linear Algebra Appl..

[22]  Panayot S. Vassilevski,et al.  The Construction of the Coarse de Rham Complexes with Improved Approximation Properties , 2014, Comput. Methods Appl. Math..

[23]  Christer Ericson,et al.  Real-Time Collision Detection (The Morgan Kaufmann Series in Interactive 3-D Technology) (The Morgan Kaufmann Series in Interactive 3D Technology) , 2004 .

[24]  Martin J. Blunt,et al.  Tenth SPE Comparative Solution Project: a comparison of upscaling techniques , 2001 .

[25]  H. Rue,et al.  In order to make spatial statistics computationally feasible, we need to forget about the covariance function , 2012 .

[26]  Peter K. Kitanidis,et al.  Randomized algorithms for generalized Hermitian eigenvalue problems with application to computing Karhunen–Loève expansion , 2013, Numer. Linear Algebra Appl..

[27]  Yalchin Efendiev,et al.  Upscaling of Mixed Finite Element Discretization Problems by the Spectral AMGe Method , 2016, SIAM J. Sci. Comput..

[28]  P. Whittle ON STATIONARY PROCESSES IN THE PLANE , 1954 .

[29]  M. Fortin,et al.  Mixed Finite Element Methods and Applications , 2013 .

[30]  Stefan Heinrich,et al.  Multilevel Monte Carlo Methods , 2001, LSSC.

[31]  Panayot S. Vassilevski,et al.  Parallel Solver for \boldsymbol{H}(div) Problems Using Hybridization and AMG , 2017 .

[32]  Michael Pippig PFFT: An Extension of FFTW to Massively Parallel Architectures , 2013, SIAM J. Sci. Comput..

[33]  Fabio Nobile,et al.  Optimization of mesh hierarchies in multilevel Monte Carlo samplers , 2014, Stochastics and Partial Differential Equations Analysis and Computations.

[34]  J. Chilès,et al.  Geostatistics: Modeling Spatial Uncertainty , 1999 .

[35]  L. Gelhar Stochastic Subsurface Hydrology , 1992 .

[36]  Robert Scheichl,et al.  Finite Element Error Analysis of Elliptic PDEs with Random Coefficients and Its Application to Multilevel Monte Carlo Methods , 2013, SIAM J. Numer. Anal..

[37]  Barbara I. Wohlmuth,et al.  Scheduling Massively Parallel Multigrid for Multilevel Monte Carlo Methods , 2016, SIAM J. Sci. Comput..

[38]  Gene H. Golub,et al.  A Note on Preconditioning for Indefinite Linear Systems , 1999, SIAM J. Sci. Comput..

[39]  Panayot S. Vassilevski,et al.  Interior penalty preconditioners for mixed finite element approximations of elliptic problems , 1996, Math. Comput..

[40]  Panayot S. Vassilevski,et al.  Numerical Multilevel Upscaling for Incompressible Flow in Reservoir Simulation: An Element-Based Algebraic Multigrid (AMGe) Approach , 2017, SIAM J. Sci. Comput..

[41]  Panayot S. Vassilevski,et al.  Exact de Rham Sequences of Spaces Defined on Macro-Elements in Two and Three Spatial Dimensions , 2008, SIAM J. Sci. Comput..

[42]  Sylvain Lefebvre,et al.  Perfect spatial hashing , 2006, SIGGRAPH 2006.

[43]  Panayot S. Vassilevski,et al.  Parallel Solver for H(div) Problems Using Hybridization and AMG , 2016 .

[44]  Michael Bader,et al.  Space-Filling Curves - An Introduction with Applications in Scientific Computing , 2012, Texts in Computational Science and Engineering.

[45]  Georg Stadler,et al.  Mitigating the Influence of the Boundary on PDE-based Covariance Operators , 2016, 1610.05280.

[46]  Stephan Mertens,et al.  Random numbers for large scale distributed Monte Carlo simulations , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  Dmitry Pekurovsky,et al.  P3DFFT: A Framework for Parallel Computations of Fourier Transforms in Three Dimensions , 2012, SIAM J. Sci. Comput..

[48]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.