Area Patterning of the Mammalian Cortex

[1]  D. O'Leary,et al.  Development of the cerebral cortex: Mechanisms controlling cell fate, laminar and areal patterning, and axonal connectivity , 2009 .

[2]  B. Molyneaux,et al.  Bhlhb5 Regulates the Postmitotic Acquisition of Area Identities in Layers II-V of the Developing Neocortex , 2008, Neuron.

[3]  G. Clowry,et al.  Progressive loss of PAX6, TBR2, NEUROD and TBR1 mRNA gradients correlates with translocation of EMX2 to the cortical plate during human cortical development , 2008, The European journal of neuroscience.

[4]  Stefan Krauss,et al.  COUP-TFI coordinates cortical patterning, neurogenesis, and laminar fate and modulates MAPK/ERK, AKT, and beta-catenin signaling. , 2008, Cerebral cortex.

[5]  Zoltán Molnár,et al.  Altered Molecular Regionalization and Normal Thalamocortical Connections in Cortex-Specific Pax6 Knock-Out Mice , 2008, The Journal of Neuroscience.

[6]  B. Cubelos,et al.  Cux-2 controls the proliferation of neuronal intermediate precursors of the cortical subventricular zone. , 2008, Cerebral cortex.

[7]  O. Britanova,et al.  Satb2 Is a Postmitotic Determinant for Upper-Layer Neuron Specification in the Neocortex , 2008, Neuron.

[8]  S. Mcconnell,et al.  Satb2 Regulates Callosal Projection Neuron Identity in the Developing Cerebral Cortex , 2008, Neuron.

[9]  S. Mcconnell,et al.  The determination of projection neuron identity in the developing cerebral cortex , 2008, Current Opinion in Neurobiology.

[10]  Karla E. Hirokawa,et al.  Lhx2 Selector Activity Specifies Cortical Identity and Suppresses Hippocampal Organizer Fate , 2008, Science.

[11]  M. Sur,et al.  Differential gene expression between sensory neocortical areas: potential roles for Ten_m3 and Bcl6 in patterning visual and somatosensory pathways. , 2007, Cerebral cortex.

[12]  Lu Lu,et al.  Genetic analysis of posterior medial barrel subfield (PMBSF) size in somatosensory cortex (SI) in recombinant inbred strains of mice , 2008, BMC Neuroscience.

[13]  Leah Krubitzer,et al.  The Magnificent Compromise: Cortical Field Evolution in Mammals , 2007, Neuron.

[14]  Lei Zhang,et al.  Activity-Dependent Development of Callosal Projections in the Somatosensory Cortex , 2007, The Journal of Neuroscience.

[15]  Shen-Ju Chou,et al.  COUP-TFI regulates the balance of cortical patterning between frontal/motor and sensory areas , 2007, Nature Neuroscience.

[16]  E. Ahrens,et al.  Disruption of Foxg1 expression by knock-in of Cre recombinase: Effects on the development of the mouse telencephalon , 2007, Neuroscience.

[17]  Ivor Mason,et al.  Initiation to end point: the multiple roles of fibroblast growth factors in neural development , 2007, Nature Reviews Neuroscience.

[18]  P. Gruss,et al.  Novel genes differentially expressed in cortical regions during late neurogenesis , 2007, The European journal of neuroscience.

[19]  D. O'Leary,et al.  Novel IgCAM, MDGA1, expressed in unique cortical area- and layer-specific patterns and transiently by distinct forebrain populations of Cajal-Retzius neurons. , 2007, Cerebral cortex.

[20]  C. Chiang,et al.  Ectopic sonic hedgehog signaling impairs telencephalic dorsal midline development: implication for human holoprosencephaly. , 2007, Human molecular genetics.

[21]  Henry Kennedy,et al.  Cell-cycle control and cortical development , 2007, Nature Reviews Neuroscience.

[22]  P. Arlotta,et al.  Neuronal subtype specification in the cerebral cortex , 2007, Nature Reviews Neuroscience.

[23]  Juan Carlos Izpisua Belmonte,et al.  Sp8 exhibits reciprocal induction with Fgf8 but has an opposing effect on anterior-posterior cortical area patterning , 2007, Neural Development.

[24]  J. Rubenstein,et al.  Patterning of frontal cortex subdivisions by Fgf17 , 2007, Proceedings of the National Academy of Sciences.

[25]  Ahmed Mansouri,et al.  Genetic interplay between the transcription factors Sp8 and Emx2 in the patterning of the forebrain , 2007, Neural Development.

[26]  M. Dattani,et al.  Lack of the murine homeobox gene Hesx1 leads to a posterior transformation of the anterior forebrain , 2007, Development.

[27]  Shen-Ju Chou,et al.  Cortical area size dictates performance at modality-specific behaviors , 2007, Proceedings of the National Academy of Sciences.

[28]  A. Huberman Mechanisms of eye-specific visual circuit development , 2007, Current Opinion in Neurobiology.

[29]  M. Götz,et al.  Loss- and gain-of-function analyses reveal targets of Pax6 in the developing mouse telencephalon , 2007, Molecular and Cellular Neuroscience.

[30]  John D West,et al.  Controlled overexpression of Pax6 in vivo negatively autoregulates the Pax6 locus, causing cell-autonomous defects of late cortical progenitor proliferation with little effect on cortical arealization , 2006, Development.

[31]  S. Nakamura,et al.  Instructive role of a peripheral pattern for the central patterning of the trigeminal projection at the brainstem and thalamus revealed by an artificially altered whisker pattern , 2006, Neuroscience.

[32]  D. O'Leary,et al.  Potential target genes of EMX2 include Odz/Ten-M and other gene families with implications for cortical patterning , 2006, Molecular and Cellular Neuroscience.

[33]  R. Zeller,et al.  Differential regulation of gene expression in the digit forming area of the mouse limb bud by SHH and gremlin 1/FGF-mediated epithelial-mesenchymal signalling , 2006, Development.

[34]  S. Anderson,et al.  The origin and specification of cortical interneurons , 2006, Nature Reviews Neuroscience.

[35]  Tobias Bonhoeffer,et al.  Lifelong learning: ocular dominance plasticity in mouse visual cortex , 2006, Current Opinion in Neurobiology.

[36]  A. Barkovich,et al.  Central Roles of the Roof Plate in Telencephalic Development and Holoprosencephaly , 2006, The Journal of Neuroscience.

[37]  M. Sur,et al.  Plasticity and specificity of cortical processing networks , 2006, Trends in Neurosciences.

[38]  Salvador Martinez,et al.  Dose-dependent functions of Fgf8 in regulating telencephalic patterning centers , 2006, Development.

[39]  Chunjie Zhao,et al.  A transgenic marker mouse line labels Cajal–Retzius cells from the cortical hem and thalamocortical axons , 2006, Brain Research.

[40]  E. Grove,et al.  Area and layer patterning in the developing cerebral cortex , 2006, Current Opinion in Neurobiology.

[41]  E. Grove,et al.  Massive loss of Cajal-Retzius cells does not disrupt neocortical layer order , 2006, Development.

[42]  L. Muzio,et al.  Effects of Emx2 inactivation on the gene expression profile of neural precursors , 2006, The European journal of neuroscience.

[43]  N. Šestan,et al.  Zfp312 is required for subcortical axonal projections and dendritic morphology of deep-layer pyramidal neurons of the cerebral cortex. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[44]  G. Fishell,et al.  The Temporal and Spatial Origins of Cortical Interneurons Predict Their Physiological Subtype , 2005, Neuron.

[45]  S. Mcconnell,et al.  Fezl regulates the differentiation and axon targeting of layer 5 subcortical projection neurons in cerebral cortex. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[46]  M. Sur,et al.  Patterning and Plasticity of the Cerebral Cortex , 2005, Science.

[47]  Shun-ichi Nakamura,et al.  Role of Fabp7, a Downstream Gene of Pax6, in the Maintenance of Neuroepithelial Cells during Early Embryonic Development of the Rat Cortex , 2005, The Journal of Neuroscience.

[48]  P. Arlotta,et al.  Fezl Is Required for the Birth and Specification of Corticospinal Motor Neurons , 2005, Neuron.

[49]  S. Mcconnell,et al.  Genomic characterisation of a Fgf-regulated gradient-based neocortical protomap , 2005, Development.

[50]  H. Kennedy,et al.  G1 Phase Regulation, Area-Specific Cell Cycle Control, and Cytoarchitectonics in the Primate Cortex , 2005, Neuron.

[51]  Sébastien Vigneau,et al.  Multiple origins of Cajal-Retzius cells at the borders of the developing pallium , 2005, Nature Neuroscience.

[52]  Ching-mei Hsu,et al.  Direct and indirect roles of CNS dorsal midline cells in choroid plexus epithelia formation , 2005, Development.

[53]  J. Kaas,et al.  The evolution of the neocortex in mammals: how is phenotypic diversity generated? , 2005, Current Opinion in Neurobiology.

[54]  D. O'Leary,et al.  Molecular gradients and development of retinotopic maps. , 2005, Annual review of neuroscience.

[55]  A. Lumsden,et al.  Compartments and their boundaries in vertebrate brain development , 2005, Nature Reviews Neuroscience.

[56]  D. O'Leary,et al.  Ventralized dorsal telencephalic progenitors in Pax6 mutant mice generate GABA interneurons of a lateral ganglionic eminence fate. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[57]  F. Polleux Genetic Mechanisms Specifying Cortical Connectivity Let’s MakeSome Projections Together , 2005, Neuron.

[58]  S. Krauss,et al.  Effects of canonical Wnt signaling on dorso-ventral specification of the mouse telencephalon. , 2005, Developmental biology.

[59]  Massimo Scanziani,et al.  A precritical period for plasticity in visual cortex , 2005, Current Opinion in Neurobiology.

[60]  Paola Arlotta,et al.  Neuronal Subtype-Specific Genes that Control Corticospinal Motor Neuron Development In Vivo , 2005, Neuron.

[61]  K. Millen,et al.  Roof plate-dependent patterning of the vertebrate dorsal central nervous system. , 2005, Developmental biology.

[62]  C. Collins,et al.  Variation in the cortical area map of C57BL/6J and DBA/2J inbred mice predicts strain identity , 2005, BMC Neuroscience.

[63]  Tomomi Shimogori,et al.  Embryonic signaling centers expressing BMP, WNT and FGF proteins interact to pattern the cerebral cortex , 2004, Development.

[64]  S. Nakanishi,et al.  Distinct ontogenic and regional expressions of newly identified Cajal-Retzius cell-specific genes during neocorticogenesis. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[65]  Takayoshi Inoue,et al.  Gene expression analysis of the late embryonic mouse cerebral cortex using DNA microarray: identification of several region- and layer-specific genes. , 2004, Cerebral cortex.

[66]  Tadashi Hamasaki,et al.  EMX2 Regulates Sizes and Positioning of the Primary Sensory and Motor Areas in Neocortex by Direct Specification of Cortical Progenitors , 2004, Neuron.

[67]  Arnold R Kriegstein,et al.  Patterns of neuronal migration in the embryonic cortex , 2004, Trends in Neurosciences.

[68]  T. Hirano,et al.  Zinc finger gene fez‐like functions in the formation of subplate neurons and thalamocortical axons , 2004, Developmental dynamics : an official publication of the American Association of Anatomists.

[69]  D. O'Leary,et al.  Identification and characterization of two novel brain-derived immunoglobulin superfamily members with a unique structural organization , 2004, Molecular and Cellular Neuroscience.

[70]  O. Marín,et al.  Cell migration in the forebrain. , 2003, Annual review of neuroscience.

[71]  E. Grove,et al.  Generating the cerebral cortical area map. , 2003, Annual review of neuroscience.

[72]  S. Pleasure,et al.  Expression of the BMP antagonist Dan during murine forebrain development. , 2003, Brain research. Developmental brain research.

[73]  B. Fischer,et al.  Visual field representations and locations of visual areas V1/2/3 in human visual cortex. , 2003, Journal of vision.

[74]  U. Rüther,et al.  A disrupted balance between Bmp/Wnt and Fgf signaling underlies the ventralization of the Gli3 mutant telencephalon. , 2003, Developmental biology.

[75]  E. Grove,et al.  Emx2 patterns the neocortex by regulating FGF positional signaling , 2003, Nature Neuroscience.

[76]  C. W. Ragsdale,et al.  Identification of a Pax6-Dependent Epidermal Growth Factor Family Signaling Source at the Lateral Edge of the Embryonic Cerebral Cortex , 2003, The Journal of Neuroscience.

[77]  P. Rakic,et al.  Four-Dimensional Migratory Coordinates of GABAergic Interneurons in the Developing Mouse Cortex , 2003, The Journal of Neuroscience.

[78]  K. Kullander,et al.  Area Specificity and Topography of Thalamocortical Projections Are Controlled by ephrin/Eph Genes , 2003, Neuron.

[79]  Luca Muzio,et al.  Emx1, emx2 and pax6 in specification, regionalization and arealization of the cerebral cortex. , 2003, Cerebral cortex.

[80]  A. Goffinet,et al.  Reelin and brain development , 2003, Nature Reviews Neuroscience.

[81]  D. O'Leary,et al.  Cloning and cortical expression of rat Emx2 and adenovirus-mediated overexpression to assess its regulation of area-specific targeting of thalamocortical axons. , 2003, Cerebral cortex.

[82]  J. Rubenstein,et al.  Molecular regionalization of the neocortex is disrupted in Fgf8 hypomorphic mutants , 2003, Development.

[83]  L. Krubitzer,et al.  Nature versus nurture revisited: an old idea with a new twist , 2003, Progress in Neurobiology.

[84]  D. O'Leary,et al.  Emx1 and Emx2 cooperate to regulate cortical size, lamination, neuronal differentiation, development of cortical efferents, and thalamocortical pathfinding , 2003, The Journal of comparative neurology.

[85]  D. O'Leary,et al.  Dynamic Patterned Expression of Orphan Nuclear Receptor Genes RORα and RORβ in Developing Mouse Forebrain , 2003, Developmental Neuroscience.

[86]  Randall R. Johnson,et al.  EphA family gene expression in the developing mouse neocortex: Regional patterns reveal intrinsic programs and extrinsic influence , 2003, The Journal of comparative neurology.

[87]  D. O'Leary,et al.  Dynamic patterned expression of orphan nuclear receptor genes RORalpha and RORbeta in developing mouse forebrain. , 2003, Developmental neuroscience.

[88]  G. Fishell,et al.  The caudal ganglionic eminence is a source of distinct cortical and subcortical cell populations , 2002, Nature Neuroscience.

[89]  G. Fishell,et al.  Parsing the prosencephalon , 2002, Nature Reviews Neuroscience.

[90]  K. Eto,et al.  Mouse GLI3 regulates Fgf8 expression and apoptosis in the developing neural tube, face, and limb bud. , 2002, Developmental biology.

[91]  Ryan M. Anderson,et al.  Chordin and noggin promote organizing centers of forebrain development in the mouse. , 2002, Development.

[92]  Z. Molnár,et al.  Role of Emx2 in the development of the reciprocal connectivity between cortex and thalamus , 2002, The Journal of comparative neurology.

[93]  S. Mcconnell,et al.  BMP Signaling Is Required Locally to Pattern the Dorsal Telencephalic Midline , 2002, Neuron.

[94]  D. O'Leary,et al.  Distinct Actions of Emx1, Emx2, andPax6 in Regulating the Specification of Areas in the Developing Neocortex , 2002, The Journal of Neuroscience.

[95]  Luis Puelles,et al.  Cortical Excitatory Neurons and Glia, But Not GABAergic Neurons, Are Produced in the Emx1-Expressing Lineage , 2002, The Journal of Neuroscience.

[96]  Anjen Chenn,et al.  Regulation of Cerebral Cortical Size by Control of Cell Cycle Exit in Neural Precursors , 2002, Science.

[97]  Tetsuo Noda,et al.  Brn-1 and Brn-2 share crucial roles in the production and positioning of mouse neocortical neurons. , 2002, Genes & development.

[98]  S. Aizawa,et al.  Absence of Cajal-Retzius cells and subplate neurons associated with defects of tangential cell migration from ganglionic eminence in Emx1/2 double mutant cerebral cortex. , 2002, Development.

[99]  U. Rüther,et al.  Wnt and Bmp signalling cooperatively regulate graded Emx2 expression in the dorsal telencephalon. , 2002, Development.

[100]  P. Rakic,et al.  Origin of GABAergic neurons in the human neocortex , 2002, Nature.

[101]  John G. Parnavelas,et al.  Modes of neuronal migration in the developing cerebral cortex , 2002, Nature Reviews Neuroscience.

[102]  Michael Levine,et al.  Dorsal gradient networks in the Drosophila embryo. , 2002, Developmental biology.

[103]  Y. Ohkubo,et al.  Coordinate regulation and synergistic actions of BMP4, SHH and FGF8 in the rostral prosencephalon regulate morphogenesis of the telencephalic and optic vesicles , 2002, Neuroscience.

[104]  Y. Kawaguchi,et al.  Parvalbumin, somatostatin and cholecystokinin as chemical markers for specific GABAergic interneuron types in the rat frontal cortex , 2002, Journal of neurocytology.

[105]  M. Rosenfeld,et al.  Transcriptional Regulation of Cortical Neuron Migration by POU Domain Factors , 2002, Science.

[106]  Luca Muzio,et al.  Emx2 and Pax6 control regionalization of the pre-neuronogenic cortical primordium. , 2002, Cerebral cortex.

[107]  D. O'Leary,et al.  Patterning centers, regulatory genes and extrinsic mechanisms controlling arealization of the neocortex , 2002, Current Opinion in Neurobiology.

[108]  C. Schuurmans,et al.  Molecular mechanisms underlying cell fate specification in the developing telencephalon , 2002, Current Opinion in Neurobiology.

[109]  S. Pfaff,et al.  Transcriptional codes and the control of neuronal identity. , 2002, Annual review of neuroscience.

[110]  Y. Ohkubo,et al.  Coordinate expression of Fgf8, Otx2, Bmp4, and Shh in the rostral prosencephalon during development of the telencephalic and optic vesicles , 2001, Neuroscience.

[111]  C. Walsh,et al.  Patterning of the Dorsal Telencephalon and Cerebral Cortex by a Roof Plate-Lhx2 Pathway , 2001, Neuron.

[112]  M. Götz,et al.  Emx2 Promotes Symmetric Cell Divisions and a Multipotential Fate in Precursors from the Cerebral Cortex , 2001, Molecular and Cellular Neuroscience.

[113]  E. Grove,et al.  Neocortex Patterning by the Secreted Signaling Molecule FGF8 , 2001, Science.

[114]  R. McKay,et al.  Sequential actions of BMP receptors control neural precursor cell production and fate. , 2001, Genes & development.

[115]  M. Tsai,et al.  COUP-TFI: an intrinsic factor for early regionalization of the neocortex. , 2001, Genes & development.

[116]  C. Walsh,et al.  Protein–Protein interactions, cytoskeletal regulation and neuronal migration , 2001, Nature Reviews Neuroscience.

[117]  P. Goldman-Rakic,et al.  Prefrontal Microcircuits: Membrane Properties and Excitatory Input of Local, Medium, and Wide Arbor Interneurons , 2001, The Journal of Neuroscience.

[118]  D. Lowenstein,et al.  Wnt receptors and Wnt inhibitors are expressed in gradients in the developing telencephalon , 2001, Mechanisms of Development.

[119]  E. Cherubini,et al.  Generating diversity at GAB Aergic synapses , 2001, Trends in Neurosciences.

[120]  E. Grove,et al.  LIM-homeodomain gene Lhx2 regulates the formation of the cortical hem , 2001, Mechanisms of Development.

[121]  A. Neubüser,et al.  Expression of members of the Fgf family and their receptors during midfacial development , 2001, Mechanisms of Development.

[122]  J. Rubenstein,et al.  Gsh2 and Pax6 play complementary roles in dorsoventral patterning of the mammalian telencephalon. , 2001, Development.

[123]  Pasko Rakic,et al.  Independent parcellation of the embryonic visual cortex and thalamus revealed by combinatorial Eph/ephrin gene expression , 2001, Current Biology.

[124]  R. Beddington,et al.  Getting your head around Hex and Hesx1: forebrain formation in mouse. , 2001, The International journal of developmental biology.

[125]  E. Cherubini,et al.  Generating diversity at GABAergic synapses. , 2001, Trends in neurosciences.

[126]  C. Walsh,et al.  Human brain malformations and their lessons for neuronal migration. , 2001, Annual review of neuroscience.

[127]  P. Gruss,et al.  Pax6 Modulates the Dorsoventral Patterning of the Mammalian Telencephalon , 2000, The Journal of Neuroscience.

[128]  H. Toresson,et al.  Genetic control of dorsal-ventral identity in the telencephalon: opposing roles for Pax6 and Gsh2. , 2000, Development.

[129]  Qing Liu,et al.  Differential Expression of COUP-TFI, CHL1, and Two Novel Genes in Developing Neocortex Identified by Differential Display PCR , 2000, The Journal of Neuroscience.

[130]  T. Jessell Neuronal specification in the spinal cord: inductive signals and transcriptional codes , 2000, Nature Reviews Genetics.

[131]  Luca Muzio,et al.  Area identity shifts in the early cerebral cortex of Emx2−/− mutant mice , 2000, Nature Neuroscience.

[132]  D. Kioussis,et al.  The homeobox gene Hex is required in definitive endodermal tissues for normal forebrain, liver and thyroid formation. , 2000, Development.

[133]  D. O'Leary,et al.  Regulation of area identity in the mammalian neocortex by Emx2 and Pax6. , 2000, Science.

[134]  T. Jessell,et al.  Genetic ablation reveals that the roof plate is essential for dorsal interneuron specification , 2000, Nature.

[135]  A. McMahon,et al.  A local Wnt-3a signal is required for development of the mammalian hippocampus. , 2000, Development.

[136]  J Galceran,et al.  Hippocampus development and generation of dentate gyrus granule cells is regulated by LEF1. , 2000, Development.

[137]  D. O'Leary,et al.  Graded and Areal Expression Patterns of Regulatory Genes and Cadherins in Embryonic Neocortex Independent of Thalamocortical Input , 1999, The Journal of Neuroscience.

[138]  Michael C Crair,et al.  The Nuclear Orphan Receptor COUP-TFI Is Required for Differentiation of Subplate Neurons and Guidance of Thalamocortical Axons , 1999, Neuron.

[139]  A. Peterson,et al.  oto is a homeotic locus with a role in anteroposterior development that is partially redundant with Lim1. , 1999, Development.

[140]  D. Price,et al.  The transcription factor, Pax6, is required for cell proliferation and differentiation in the developing cerebral cortex. , 1999, Cerebral cortex.

[141]  M. Wassef,et al.  Role of thalamic axons in the expression of H-2Z1, a mouse somatosensory cortex specific marker. , 1999, Cerebral cortex.

[142]  M. Mehler,et al.  Multiple Roles of Bone Morphogenetic Protein Signaling in the Regulation of Cortical Cell Number and Phenotype , 1999, The Journal of Neuroscience.

[143]  J. Rubenstein,et al.  Early neocortical regionalization in the absence of thalamic innervation. , 1999, Science.

[144]  M. Wassef,et al.  Specification of Somatosensory Area Identity in Cortical Explants , 1999, The Journal of Neuroscience.

[145]  H. Westphal,et al.  Control of hippocampal morphogenesis and neuronal differentiation by the LIM homeobox gene Lhx5. , 1999, Science.

[146]  G. Orban,et al.  Reorganization in the visual cortex after retinal and cortical damage. , 1999, Restorative neurology and neuroscience.

[147]  C. Shatz,et al.  Activity-dependent cortical target selection by thalamic axons. , 1998, Science.

[148]  C. W. Ragsdale,et al.  The hem of the embryonic cerebral cortex is defined by the expression of multiple Wnt genes and is compromised in Gli3-deficient mice. , 1998, Development.

[149]  J. Martinez-Barbera,et al.  Mutations in the homeobox gene HESX1/Hesx1 associated with septo-optic dysplasia in human and mouse , 1998, Nature Genetics.

[150]  J. Rubenstein,et al.  Regionalization of the prosencephalic neural plate. , 1998, Annual review of neuroscience.

[151]  Thomas M. Jessell,et al.  Molecular and cellular approaches to neural development , 1998 .

[152]  F. Alt,et al.  Lhx2, a LIM homeobox gene, is required for eye, forebrain, and definitive erythrocyte development. , 1997, Development.

[153]  J. Rubenstein,et al.  Inductive interactions direct early regionalization of the mouse forebrain. , 1997, Development.

[154]  B. Hogan,et al.  Bone morphogenetic proteins (BMPs) as regulators of dorsal forebrain development. , 1997, Development.

[155]  I. Dawid,et al.  Expression of murine Lhx5 suggests a role in specifying the forebrain , 1997, Developmental dynamics : an official publication of the American Association of Anatomists.

[156]  L. White,et al.  Structure of the human sensorimotor system. I: Morphology and cytoarchitecture of the central sulcus. , 1997, Cerebral cortex.

[157]  L. White,et al.  Structure of the human sensorimotor system. II: Lateral symmetry. , 1997, Cerebral cortex.

[158]  P Gruss,et al.  Forebrain patterning defects in Small eye mutant mice. , 1996, Development.

[159]  T. Chibazakura,et al.  [G1 phase regulation]. , 1996, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[160]  M. Levine,et al.  Threshold responses to the dorsal regulatory gradient and the subdivision of primary tissue territories in the Drosophila embryo. , 1996, Current opinion in genetics & development.

[161]  M. Levine,et al.  Regulation of two pair-rule stripes by a single enhancer in the Drosophila embryo. , 1996, Developmental biology.

[162]  O. Fehér,et al.  Neuronal plasticity induced by neonatal monocular (and binocular) enucleation , 1996, Progress in Neurobiology.

[163]  C. MacArthur,et al.  Roles for FGF8 in the Induction, Initiation, and Maintenance of Chick Limb Development , 1996, Cell.

[164]  Colin Blakemore,et al.  How do thalamic axons find their way to the cortex? , 1995, Trends in Neurosciences.

[165]  A. V. Grimstone Molecular biology of the cell (3rd edn) , 1995 .

[166]  G. Martin,et al.  The mouse Fgf8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embryo. , 1995, Development.

[167]  Z. Wollberg,et al.  Cross-modal neuroplasticity in the blind mole rat Spalax ehrenbergi: a WGA-HRP tracing study. , 1994, Neuroreport.

[168]  R. Wides,et al.  odd Oz: A novel Drosophila pair rule gene , 1994, Cell.

[169]  Michel Cohen-Tannoudji,et al.  Early determination of a mouse somatosensory cortex marker , 1994, Nature.

[170]  J. Parnavelas,et al.  Lineage analysis reveals neurotransmitter (GABA or glutamate) but not calcium-binding protein homogeneity in clonally related cortical neurons , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[171]  D. O'Leary,et al.  Specification of neocortical areas and thalamocortical connections. , 1994, Annual review of neuroscience.

[172]  C. Shatz,et al.  The subplate, a transient neocortical structure: its role in the development of connections between thalamus and cortex. , 1994, Annual review of neuroscience.

[173]  D. O'Leary,et al.  Development of projection neuron types, axon pathways, and patterned connections of the mammalian cortex , 1993, Neuron.

[174]  M. Gulisano,et al.  Nested expression domains of four homeobox genes in developing rostral brain , 1992, Nature.

[175]  M. Gulisano,et al.  Two vertebrate homeobox genes related to the Drosophila empty spiracles gene are expressed in the embryonic cerebral cortex. , 1992, The EMBO journal.

[176]  Bradley L. Schlaggar,et al.  The specification of sensory cortex: Lessons from cortical transplantation , 1992, Experimental Neurology.

[177]  H. Killackey,et al.  The effects of bilateral enucleation in the primate fetus on the parcellation of visual cortex. , 1991, Brain research. Developmental brain research.

[178]  D. O'Leary,et al.  Potential of visual cortex to develop an array of functional units unique to somatosensory cortex , 1991, Science.

[179]  P. Rakić,et al.  A novel cytoarchitectonic area induced experimentally within the primate visual cortex. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[180]  D. O'Leary,et al.  Do cortical areas emerge from a protocortex? , 1989, Trends in Neurosciences.

[181]  D. O'Leary,et al.  Selective elimination of axons extended by developing cortical neurons is dependent on regional locale: experiments utilizing fetal cortical transplants , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[182]  Henry Kennedy,et al.  Maturation and connectivity of the visual cortex in monkey is altered by prenatal removal of retinal input , 1989, Nature.

[183]  P. Rakic Specification of cerebral cortical areas. , 1988, Science.

[184]  D. Purves Body and Brain: A Trophic Theory of Neural Connections , 1988 .

[185]  D. O'Leary,et al.  The physiological identification of pyramidal tract neurons within transplants in the rostral cortex taken from the occipital cortex during development , 1987, Brain Research.

[186]  J Dörfl,et al.  Selective breeding for variations in patterns of mystacial vibrissae of mice. Bilaterally symmetrical strains derived from ICR stock. , 1986, The Journal of heredity.

[187]  B. Stanfield,et al.  Fetal occipital cortical neurons transplanted to the rostral cortex can extend and maintain a pyramidal tract axon , 1985, Nature.

[188]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[189]  G. Paxinos The Rat nervous system , 1985 .

[190]  P. Rakić,et al.  Development of prestriate visual projections in the monkey and human fetal cerebrum revealed by transient cholinesterase staining , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[191]  W. H. Dobelle,et al.  The topography and variability of the primary visual cortex in man. , 1974, Journal of neurosurgery.

[192]  T. Woolsey,et al.  Somatosensory Cortex: Structural Alterations following Early Injury to Sense Organs , 1973, Science.

[193]  F. Sanides COMPARATIVE ARCHITECTONICS OF THE NEOCORTEX OF MAMMALS AND THEIR EVOLUTIONARY INTERPRETATION * , 1969 .

[194]  D. Hubel,et al.  SINGLE-CELL RESPONSES IN STRIATE CORTEX OF KITTENS DEPRIVED OF VISION IN ONE EYE. , 1963, Journal of neurophysiology.