Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications

Overview of the Chemistry of Polluted and Remote Atmospheres. The Atmospheric System. Spectroscopy and Photochemistry: Fundamentals. Photochemistry of Important Atmospheric Species. Kinetics and Atmospheric Chemistry. Rates and Mechanisms of Gas-Phase Reactions in Irradiated Organic-NOx-Air Mixtures. Chemistry of Inorganic Nitrogen Compounds. Acid Deposition: Formation and Fates of Inorganic and Organic Acids in the Troposphere. Particles in the Troposphere. Airborne Polycyclic Aromatic Hydrocarbons and Their Derivatives: Atmospheric Chemistry and Toxicological Implications. Analytical Methods and Typical Atmospheric Concentrations for Gases and Particles. Homogeneous and Heterogeneous Chemistry in the Stratosphere. Scientific Basis for Control of Halogenated Organics. Global Tropospheric Chemistry and Climate Change. Indoor Air Pollution: Sources, Levels, Chemistry, and Fates. Applications of Atmospheric Chemistry: Air Pollution Control Strategies and Risk Assessments for Tropospheric Ozone and Associated Photochemical Oxidants, Acids, Particles, and Hazardous Air Pollutants. Appendix I: Enthalpies of Formation of Some Gaseous Molecules, Atoms, and Free Radicals at 298 K. Appendix II: Bond Dissociation Energies. Appendix III: Running the OZIPR Model. Appendix IV: Some Relevant Web Sites. Appendix V: Pressures and Temperatures for Standard Atmosphere. Appendix VI: Answers to Selected Problems. Subject Index.