A New Multidimensional Slow Continued Fraction Algorithm and Stepped Surface

We give a new algorithm of slow continued fraction expansion related to an arbitrary real cubic number field as a 2-dimensional version of the Farey map. Using our algorithm, we can find the generators of dual substitutions (so-called tiling substitutions) for any stepped surface for any cubic direction.

[1]  J. Tamura A class of transcendental numbers having explicit g-adic and Jacobi-Perron expansions of arbitrary dimension , 1995 .

[2]  T. Fujita,et al.  Symbolical and Geometrical Characterizations of Kronecker Sequences by Using the Accelerated Brun Algorithm , 2000 .

[3]  Jun-ichi Tamura,et al.  New Algorithm of Continued Fractions Related to Real Algebraic Number Fields of Degree ≤ 5 , 2011, Integers.

[4]  Makoto Ohtsuki,et al.  Parallelogram Tilings and Jacobi-Perron Algorithm , 1994 .

[5]  Pierre Arnoux,et al.  Discrete planes, ${\mathbb {Z}}^2$-actions, Jacobi-Perron algorithm and substitutions , 2002 .

[6]  Shunji Ito,et al.  Algorithms with mediant convergents and their metrical theory , 1989 .

[7]  Thomas Fernique,et al.  Bidimensional Sturmian Sequences and Substitutions , 2005, Developments in Language Theory.

[8]  Shunji Ito,et al.  Discrete planes, Z2-actions, Jacobi-Perron algorithm and substitutions , 2006 .

[9]  Makoto Ohtsuki,et al.  Modified Jacobi-Perron Algorithm and Generating Markov Partitions for Special Hyperbolic Toral Automorphisms , 1993 .

[10]  Shin-ichi Yasutomi,et al.  On continued fractions, substitutions and characteristic sequences [nx+y]-[(n-1)x+y] , 1990 .

[11]  Thomas Fernique,et al.  Brun expansions of stepped surfaces , 2011, Discret. Math..

[12]  P. Arnoux,et al.  Pisot substitutions and Rauzy fractals , 2001 .

[13]  O. Perron,et al.  Grundlagen für eine Theorie des Jacobischen Kettenbruchalgorithmus , 1907 .

[14]  Jun-ichi Tamura,et al.  A new multidimensional continued fraction algorithm , 2009, Math. Comput..

[15]  Shin-ichi Yasutomi,et al.  On simultaneous approximation to (α,α2) with α3+kα−1=0 , 2003 .