A note on panchromatic colorings

This paper studies the quantity $p(n,r)$, that is the minimal number of edges of an $n$-uniform hypergraph without panchromatic coloring (it means that every edge meets every color) in $r$ colors. If $r \leq c \frac{n}{\ln n}$ then all bounds have a type $A_1(n, \ln n, r)(\frac{r}{r-1})^n \leq p(n, r) \leq A_2(n, r, \ln r) (\frac{r}{r-1})^n$, where $A_1$, $A_2$ are some algebraic fractions. The main result is a new lower bound on $p(n,r)$ when $r$ is at least $c \sqrt n$; we improve an upper bound on $p(n,r)$ if $n = o(r^{3/2})$. Also we show that $p(n,r)$ has upper and lower bounds depend only on $n/r$ when the ratio $n/r$ is small, which can not be reached by the previous probabilistic machinery. Finally we construct an explicit example of a hypergraph without panchromatic coloring and with $(\frac{r}{r-1} + o(1))^n$ edges for $r = o(\sqrt{\frac{n}{\ln n}})$.

[1]  Dmitry A. Shabanov,et al.  On a generalization of Rubin's theorem , 2011, J. Graph Theory.

[2]  Heidi Gebauer,et al.  On the construction of 3-chromatic hypergraphs with few edges , 2013, J. Comb. Theory, Ser. A.

[3]  Alexandr V. Kostochka,et al.  Color-Critical Graphs and Hypergraphs with Few Edges: A Survey , 2006 .

[4]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[5]  D. Shabanov,et al.  Improvement of the lower bound in the Kostochka problem of panchromatic coloring of a hypergraph , 2011 .

[6]  Alexandr V. Kostochka,et al.  On a Theorem of Erdos, Rubin, and Taylor on Choosability of Complete Bipartite Graphs , 2002, Electron. J. Comb..

[7]  P. Erdos-L Lovász Problems and Results on 3-chromatic Hypergraphs and Some Related Questions , 2022 .

[8]  Alexander Sidorenko,et al.  What we know and what we do not know about Turán numbers , 1995, Graphs Comb..

[9]  Alexandr V. Kostochka,et al.  Density Conditions for Panchromatic Colourings of Hypergraphs , 2001, Comb..

[10]  Miklós Bóna,et al.  A Survey of Stack-Sorting Disciplines , 2003, Electron. J. Comb..

[11]  András Pluhár,et al.  Greedy colorings of uniform hypergraphs , 2009 .

[12]  Дмитрий Александрович Шабанов,et al.  О существовании полноцветных раскрасок для равномерных гиперграфов@@@The existence of panchromatic colourings for uniform hypergraphs , 2010 .

[13]  Noga Alon,et al.  Choice Numbers of Graphs: a Probabilistic Approach , 1992, Combinatorics, Probability and Computing.

[14]  A. Raigorodskii,et al.  The Erdős-Hajnal problem of hypergraph colouring, its generalizations, and related problems , 2011 .

[15]  P. Erdos On a combinatorial problem. II , 1964 .