Drift compensation and its sensory basis in waterstriders (Gerris paludum F.)

[1]  Jochen Zeil,et al.  Visually controlled station-keeping by hovering guard bees ofTrigona (Tetragonisca) angustula (Apidae, Meliponinae) , 1989, Journal of Comparative Physiology A.

[2]  L. Shen,et al.  Neural integration by short term potentiation , 1989, Biological Cybernetics.

[3]  J. Koenderink,et al.  Facts on optic flow , 1987, Biological Cybernetics.

[4]  D. Hart,et al.  Feeding Territoriality in Aquatic Insects: Cost-Benefit Models and Experimental Tests , 1987 .

[5]  J. Koenderink Optic flow , 1986, Vision Research.

[6]  A. Borst,et al.  What kind of movement detector is triggering the landing response of the housefly? , 1986, Biological Cybernetics.

[7]  T. Collett,et al.  The optomotor system on the ground: on the absence of visual control of speed in walking ladybirds , 1985, Journal of Comparative Physiology A.

[8]  D. Rubenstein Resource Acquisition and Alternative Mating Strategies in Water Striders , 1984 .

[9]  T. S. Collett,et al.  Landmark learning in bees , 1983, Journal of comparative physiology.

[10]  R. Preiss,et al.  Stabilization of altitude and speed in tethered flying gypsy moth males: influence of (+) and (‐)‐disparlure , 1983 .

[11]  Klaus Hausen,et al.  Motion sensitive interneurons in the optomotor system of the fly , 1982, Biological Cybernetics.

[12]  K. Hausen Motion sensitive interneurons in the optomotor system of the fly , 1982, Biological Cybernetics.

[13]  B. A. Cartwright,et al.  How honey bees use landmarks to guide their return to a food source , 1982, Nature.

[14]  T. S. Collett,et al.  Some operating rules for the optomotor system of a hoverfly during voluntary flight , 1980, Journal of comparative physiology.

[15]  H. C. Longuet-Higgins,et al.  The interpretation of a moving retinal image , 1980, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[16]  G. Scudder,et al.  Predation in Gerris (Hemiptera): Reactive distances and locomotion rates , 1979, Oecologia.

[17]  D. Wilson,et al.  Interference Competition in a Tropical Ripple Bug (Hemiptera: Veliidae) , 1978 .

[18]  W. Precht Neuronal Operations in the Vestibular System , 1978, Studies of Brain Function.

[19]  E. Buchner Elementary movement detectors in an insect visual system , 1976, Biological Cybernetics.

[20]  T. Collett,et al.  Visual control of flight behaviour in the hoverflySyritta pipiens L. , 1975, Journal of comparative physiology.

[21]  K. Wiese The mechanoreceptive system of prey localization inNotonecta , 1974, Journal of comparative physiology.

[22]  R. Murphey Sensory aspects of the control of orientation to prey by the waterstrider, Gerris remigis , 1971, Zeitschrift für vergleichende Physiologie.

[23]  R. Jander,et al.  Die Bedeutung von Gelenkreceptoren in den Beinen für die Geotaxis der höheren Insekten (Pterygota) , 1970, Zeitschrift für vergleichende Physiologie.

[24]  H. Langer,et al.  Die Struktur des Rhabdoms im „Doppelauge“ des Wasserläufers Gerris lacustris , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[25]  M. Lindauer,et al.  Windkompensation und Seitenwindkorrektur der Bienen beim Flug über Wasser , 2004, Zeitschrift für vergleichende Physiologie.

[26]  Martin Egelhaaf,et al.  Neural Mechanisms of Visual Course Control in Insects , 1989 .

[27]  R. Wehner Spatial Vision in Arthropods , 1981 .

[28]  Horst Mittelstaedt,et al.  Mechanismen der Orientierung ohne richtende Außenreize , 1973 .