Drift compensation and its sensory basis in waterstriders (Gerris paludum F.)
暂无分享,去创建一个
[1] Jochen Zeil,et al. Visually controlled station-keeping by hovering guard bees ofTrigona (Tetragonisca) angustula (Apidae, Meliponinae) , 1989, Journal of Comparative Physiology A.
[2] L. Shen,et al. Neural integration by short term potentiation , 1989, Biological Cybernetics.
[3] J. Koenderink,et al. Facts on optic flow , 1987, Biological Cybernetics.
[4] D. Hart,et al. Feeding Territoriality in Aquatic Insects: Cost-Benefit Models and Experimental Tests , 1987 .
[5] J. Koenderink. Optic flow , 1986, Vision Research.
[6] A. Borst,et al. What kind of movement detector is triggering the landing response of the housefly? , 1986, Biological Cybernetics.
[7] T. Collett,et al. The optomotor system on the ground: on the absence of visual control of speed in walking ladybirds , 1985, Journal of Comparative Physiology A.
[8] D. Rubenstein. Resource Acquisition and Alternative Mating Strategies in Water Striders , 1984 .
[9] T. S. Collett,et al. Landmark learning in bees , 1983, Journal of comparative physiology.
[10] R. Preiss,et al. Stabilization of altitude and speed in tethered flying gypsy moth males: influence of (+) and (‐)‐disparlure , 1983 .
[11] Klaus Hausen,et al. Motion sensitive interneurons in the optomotor system of the fly , 1982, Biological Cybernetics.
[12] K. Hausen. Motion sensitive interneurons in the optomotor system of the fly , 1982, Biological Cybernetics.
[13] B. A. Cartwright,et al. How honey bees use landmarks to guide their return to a food source , 1982, Nature.
[14] T. S. Collett,et al. Some operating rules for the optomotor system of a hoverfly during voluntary flight , 1980, Journal of comparative physiology.
[15] H. C. Longuet-Higgins,et al. The interpretation of a moving retinal image , 1980, Proceedings of the Royal Society of London. Series B. Biological Sciences.
[16] G. Scudder,et al. Predation in Gerris (Hemiptera): Reactive distances and locomotion rates , 1979, Oecologia.
[17] D. Wilson,et al. Interference Competition in a Tropical Ripple Bug (Hemiptera: Veliidae) , 1978 .
[18] W. Precht. Neuronal Operations in the Vestibular System , 1978, Studies of Brain Function.
[19] E. Buchner. Elementary movement detectors in an insect visual system , 1976, Biological Cybernetics.
[20] T. Collett,et al. Visual control of flight behaviour in the hoverflySyritta pipiens L. , 1975, Journal of comparative physiology.
[21] K. Wiese. The mechanoreceptive system of prey localization inNotonecta , 1974, Journal of comparative physiology.
[22] R. Murphey. Sensory aspects of the control of orientation to prey by the waterstrider, Gerris remigis , 1971, Zeitschrift für vergleichende Physiologie.
[23] R. Jander,et al. Die Bedeutung von Gelenkreceptoren in den Beinen für die Geotaxis der höheren Insekten (Pterygota) , 1970, Zeitschrift für vergleichende Physiologie.
[24] H. Langer,et al. Die Struktur des Rhabdoms im „Doppelauge“ des Wasserläufers Gerris lacustris , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.
[25] M. Lindauer,et al. Windkompensation und Seitenwindkorrektur der Bienen beim Flug über Wasser , 2004, Zeitschrift für vergleichende Physiologie.
[26] Martin Egelhaaf,et al. Neural Mechanisms of Visual Course Control in Insects , 1989 .
[27] R. Wehner. Spatial Vision in Arthropods , 1981 .
[28] Horst Mittelstaedt,et al. Mechanismen der Orientierung ohne richtende Außenreize , 1973 .