Real-time skeletal skinning with optimized centers of rotation

Skinning algorithms that work across a broad range of character designs and poses are crucial to creating compelling animations. Currently, linear blend skinning (LBS) and dual quaternion skinning (DQS) are the most widely used, especially for real-time applications. Both techniques are efficient to compute and are effective for many purposes. However, they also have many well-known artifacts, such as collapsing elbows, candy wrapper twists, and bulging around the joints. Due to the popularity of LBS and DQS, it would be of great benefit to reduce these artifacts without changing the animation pipeline or increasing the computational cost significantly. In this paper, we introduce a new direct skinning method that addresses this problem. Our key idea is to pre-compute the optimized center of rotation for each vertex from the rest pose and skinning weights. At runtime, these centers of rotation are used to interpolate the rigid transformation for each vertex. Compared to other direct skinning methods, our method significantly reduces the artifacts of LBS and DQS while maintaining real-time performance and backwards compatibility with the animation pipeline.

[1]  Michael Gleicher,et al.  Building efficient, accurate character skins from examples , 2003, ACM Trans. Graph..

[2]  Tomohiko Mukai,et al.  Building helper bone rigs from examples , 2015, I3D.

[3]  Olga Sorkine-Hornung,et al.  Context‐Aware Skeletal Shape Deformation , 2007, Comput. Graph. Forum.

[4]  Markus H. Gross,et al.  Efficient simulation of secondary motion in rig-space , 2013, SCA '13.

[5]  Byung-Uck Kim,et al.  Real-time data driven deformation using kernel canonical correlation analysis , 2008, ACM Trans. Graph..

[6]  W. Kabsch A discussion of the solution for the best rotation to relate two sets of vectors , 1978 .

[7]  N. Chentanez,et al.  Solid simulation with oriented particles , 2011, SIGGRAPH 2011.

[8]  Jirí Zára,et al.  Spherical blend skinning: a real-time deformation of articulated models , 2005, I3D '05.

[9]  Olga Sorkine-Hornung,et al.  Stretchable and Twistable Bones for Skeletal Shape Deformation , 2011, ACM Trans. Graph..

[10]  Baining Guo,et al.  Simulation and control of skeleton-driven soft body characters , 2013, ACM Trans. Graph..

[11]  Markus H. Gross,et al.  Rig-space physics , 2012, ACM Trans. Graph..

[12]  Jovan Popovic,et al.  Deformation transfer for triangle meshes , 2004, ACM Trans. Graph..

[13]  Marc Alexa,et al.  Linear combination of transformations , 2002, ACM Trans. Graph..

[14]  Jian J. Zhang,et al.  Curve skeleton skinning for human and creature characters , 2006, Comput. Animat. Virtual Worlds.

[15]  Matthias Zwicker,et al.  Mesh-based inverse kinematics , 2005, ACM Trans. Graph..

[16]  Peter-Pike J. Sloan,et al.  Physics-inspired upsampling for cloth simulation in games , 2011, ACM Trans. Graph..

[17]  James E. Gain,et al.  Animation space: A truly linear framework for character animation , 2006, TOGS.

[18]  John P. Lewis,et al.  Pose Space Deformation: A Unified Approach to Shape Interpolation and Skeleton-Driven Deformation , 2000, SIGGRAPH.

[19]  Oliver Deussen,et al.  Farthest-point optimized point sets with maximized minimum distance , 2011, HPG '11.

[20]  Jessica K. Hodgins,et al.  Capturing and animating skin deformation in human motion , 2006, SIGGRAPH '06.

[21]  Sebastian Thrun,et al.  SCAPE: shape completion and animation of people , 2005, SIGGRAPH '05.

[22]  Berthold K. P. Horn,et al.  Closed-form solution of absolute orientation using orthonormal matrices , 1988 .

[23]  Mark Meyer,et al.  Harmonic coordinates for character articulation , 2007, ACM Trans. Graph..

[24]  Michael J. Black,et al.  MoSh: motion and shape capture from sparse markers , 2014, ACM Trans. Graph..

[25]  Casey Muratori,et al.  Errors and Omissions in Marc Alexa ’ s “ Linear Combination of Transformations ” , 2003 .

[26]  Markus H. Gross,et al.  Differential blending for expressive sketch-based posing , 2013, SCA '13.

[27]  Andrew Selle,et al.  Efficient elasticity for character skinning with contact and collisions , 2011, SIGGRAPH 2011.

[28]  Artus Krohn-Grimberghe,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2007) Deformation Styles for Spline-based Skeletal Animation , 2022 .

[29]  Marc Alexa,et al.  As-rigid-as-possible surface modeling , 2007, Symposium on Geometry Processing.

[30]  George Papagiannakis,et al.  Modeling of bodies and clothes for virtual environments , 2004, 2004 International Conference on Cyberworlds.

[31]  Eftychios Sifakis,et al.  Comprehensive biomechanical modeling and simulation of the upper body , 2009, TOGS.

[32]  Olga Sorkine-Hornung,et al.  Elasticity-inspired deformers for character articulation , 2012, ACM Trans. Graph..

[33]  Steve Capell,et al.  Physically based rigging for deformable characters , 2005, SCA '05.

[34]  Dinesh K. Pai,et al.  Thin skin elastodynamics , 2013, ACM Trans. Graph..

[35]  Olga Sorkine-Hornung,et al.  Bounded biharmonic weights for real-time deformation , 2011, Commun. ACM.

[36]  Xiaosong Yang,et al.  Curve skeleton skinning for human and creature characters: Research Articles , 2006 .

[37]  D. Levin,et al.  Green Coordinates , 2008, SIGGRAPH 2008.

[38]  Matthias Müller,et al.  Solid simulation with oriented particles , 2011, ACM Trans. Graph..

[39]  Jirí Zára,et al.  Geometric skinning with approximate dual quaternion blending , 2008, TOGS.

[40]  Brian Wyvill,et al.  Robust iso-surface tracking for interactive character skinning , 2014, ACM Trans. Graph..

[41]  Olga Sorkine-Hornung,et al.  Fast automatic skinning transformations , 2012, ACM Trans. Graph..

[42]  Ken-ichi Anjyo,et al.  Direct Manipulation Blendshapes , 2010, IEEE Computer Graphics and Applications.

[43]  Dinesh K. Pai,et al.  EigenSkin: real time large deformation character skinning in hardware , 2002, SCA '02.

[44]  Brian Wyvill,et al.  Implicit skinning , 2013, ACM Trans. Graph..

[45]  Peter-Pike J. Sloan,et al.  Shape by example , 2001, I3D '01.

[46]  Jessica K. Hodgins,et al.  Data-driven modeling of skin and muscle deformation , 2008, ACM Trans. Graph..

[47]  Ken Shoemake,et al.  Animating rotation with quaternion curves , 1985, SIGGRAPH.

[48]  Tao Ju,et al.  Mean value coordinates for closed triangular meshes , 2005, ACM Trans. Graph..

[49]  Samuel R. Buss,et al.  Spherical averages and applications to spherical splines and interpolation , 2001, TOGS.

[50]  Cary B. Phillips,et al.  Multi-weight enveloping: least-squares approximation techniques for skin animation , 2002, SCA '02.

[51]  Michael J. Black,et al.  Breathing life into shape , 2014, ACM Trans. Graph..

[52]  Paul G. Kry,et al.  Embedded thin shells for wrinkle simulation , 2013, ACM Trans. Graph..

[53]  Ronald Fedkiw,et al.  Robust quasistatic finite elements and flesh simulation , 2005, SCA '05.

[54]  Olga Sorkine-Hornung,et al.  Smooth Shape‐Aware Functions with Controlled Extrema , 2012, Comput. Graph. Forum.

[55]  J. Warren,et al.  Mean value coordinates for closed triangular meshes , 2005, SIGGRAPH 2005.

[56]  Eftychios Sifakis,et al.  Efficient elasticity for character skinning with contact and collisions , 2011, ACM Trans. Graph..

[57]  Daniel Thalmann,et al.  Joint-dependent local deformations for hand animation and object grasping , 1989 .

[58]  John P. Lewis,et al.  Compression and direct manipulation of complex blendshape models , 2011, ACM Trans. Graph..

[59]  JungHyun Han,et al.  Bulging‐free dual quaternion skinning , 2014, Comput. Animat. Virtual Worlds.