Logical models of discrete event systems: A comparative exposition

The increasing complexity of man-made systems calls for new tools and techniques to model them efficiently and at the desired level of abstraction. Well-established modelling paradigms, such as finite state machines, petri nets, communicating sequential processes etc., which are borrowed from the fields of computer science and operations research, often lack certain essential features for capturing discrete event dynamics. New tools such as state charts, timed transition models, finitely recursive processes etc., are evolving to take into account some of these requirements. In this paper we first characterize such systems as well as typical problems related to them. We then discuss and critically evaluate several modelling frameworks through examples. At the end we provide a comparison among the frameworks and directions for future research.

[1]  W. M. Wonham,et al.  Decentralized control and coordination of discrete-event systems with partial observation , 1990 .

[2]  MengChu Zhou,et al.  Petri net synthesis and analysis of a flexible manufacturing system cell , 1993, IEEE Trans. Syst. Man Cybern..

[3]  Alan S. Willsky,et al.  Aggregation and multi-level control in discrete event dynamic systems , 1992, Autom..

[4]  P. Ramadge,et al.  On the supremal controllable sublanguage of a given language , 1984, The 23rd IEEE Conference on Decision and Control.

[5]  Naiem Dathi Deadlock and deadlock freedom , 1989 .

[6]  A. Willsky,et al.  Tracking and restrictability in discrete-event dynamic systems , 1990, 29th IEEE Conference on Decision and Control.

[7]  P. Ramadge,et al.  On the supermal controllable sublanguage of a given language , 1987 .

[8]  Vijay K. Garg,et al.  Finite buffer realization of input-output discrete-event systems , 1995, IEEE Trans. Autom. Control..

[9]  A. Willsky,et al.  Observability of discrete event dynamic systems , 1990 .

[10]  W. M. Wonham,et al.  Think globally, act locally: decentralized supervisory control , 1992 .

[11]  Zohar Manna,et al.  Verification of concurrent programs, Part I: The temporal framework , 1981 .

[12]  Vijay K. Garg,et al.  Predicates and predicate transformers for supervisory control of discrete event dynamical systems , 1993, IEEE Trans. Autom. Control..

[13]  Richard C. Holt,et al.  Some Deadlock Properties of Computer Systems , 1972, CSUR.

[14]  Richard C. Holt,et al.  Some deadlock properties of computer systems , 1971, SOSP '71.

[15]  Panos J. Antsaklis,et al.  On the supremal controllable sublanguage in the discrete-event model of nondeterministic hybrid control systems , 1995 .

[16]  S. Marcus,et al.  Language stability and stabilizability of discrete event dynamical systems , 1993 .

[17]  John N. Tsitsiklis,et al.  On the control of discrete-event dynamical systems , 1987, 26th IEEE Conference on Decision and Control.

[18]  Raja Sengupta,et al.  Diagnosability of discrete-event systems , 1995, IEEE Trans. Autom. Control..

[19]  Alan S. Willsky,et al.  Tracking and restrictability in discrete event dynamic systems , 1992 .

[20]  Doron Drusinsky-Yoresh A state assignment procedure for single-block implementation of state charts , 1991, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[21]  R. Cieslak,et al.  Undecidability results for deterministic communicating sequential processes , 1990 .

[22]  Emmanuel Castelain,et al.  A method for hierarchical modeling of the command of flexible manufacturing systems , 1994, IEEE Trans. Syst. Man Cybern..

[23]  Willem P. de Roever,et al.  A Proof System for Communicating Sequential Processes , 1980, ACM Trans. Program. Lang. Syst..

[24]  Mark Lawford,et al.  Equivalence preserving transformations for timed transition models , 1995 .

[25]  S. Marcus,et al.  On controllability and normality of discrete event dynamical systems , 1991 .

[26]  Amit Patra,et al.  A Nondeterministic Extension over Finitely Recursive Process Model , 1997, Discret. Event Dyn. Syst..

[27]  Panos J. Antsaklis,et al.  Analysis and synthesis of discrete-event regulator systems , 1989 .

[28]  Luca Ferrarini,et al.  An incremental approach to logic controller design with Petri nets , 1992, IEEE Trans. Syst. Man Cybern..

[29]  A. Willsky,et al.  Stability and stabilization of discrete event dynamic systems , 1991 .

[30]  Tadao Murata,et al.  Petri nets: Properties, analysis and applications , 1989, Proc. IEEE.

[31]  Amit Patra,et al.  On observability with delay: antitheses and syntheses , 1994, IEEE Trans. Autom. Control..

[32]  Jana Kosecka,et al.  Control of Discrete Event Systems , 1992 .

[33]  Amnon Naamad,et al.  Statemate: a working environment for the development of complex reactive systems , 1988, ICSE '88.

[34]  M. Heymann,et al.  On stabilization of discrete-event processes , 1989, Proceedings of the 28th IEEE Conference on Decision and Control,.

[35]  R. D. Brandt,et al.  Formulas for calculating supremal controllable and normal sublanguages , 1990 .

[36]  Feng Lin Control of large scale discrete event systems: task allocation and coordination , 1991 .

[37]  Yu-Chi Ho,et al.  Introduction to special issue on dynamics of discrete event systems , 1989, Proc. IEEE.

[38]  W. Murray Wonham,et al.  Think Globally, Act Locally: Decentralized Supervisory Control , 1991, 1991 American Control Conference.

[39]  René David,et al.  Petri nets for modeling of dynamic systems: A survey , 1994, Autom..

[40]  Alan S. Willsky,et al.  Mathematics of Control, Signals, and Systems Invertibility of Discrete-event Dynamic Systems* , 2022 .

[41]  Jonathan S. Ostroff,et al.  Deciding Properties of Timed Transition Models , 1990, IEEE Trans. Parallel Distributed Syst..

[42]  Kevin M. Passino,et al.  Decidability for a temporal logic used in discrete-event system analysis , 1990 .

[43]  W. M. Wonham,et al.  On the consistency of hierarchical supervision in discrete-event systems , 1990 .

[44]  Walter Murray Wonham,et al.  Decentralized supervisory control of discrete-event systems , 1987, Inf. Sci..

[45]  P. Ramadge,et al.  Supervisory control of a class of discrete event processes , 1987 .

[46]  守屋 悦朗,et al.  J.E.Hopcroft, J.D. Ullman 著, "Introduction to Automata Theory, Languages, and Computation", Addison-Wesley, A5変形版, X+418, \6,670, 1979 , 1980 .

[47]  Michael Heymann,et al.  Control of discrete event systems modeled as hierarchical state machines , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[48]  W. M. Wonham,et al.  Fully decentralized solutions of supervisory control problems , 1995 .

[49]  C. Desclaux,et al.  Supervisory control of discrete-event processes with partial observations , 1988 .

[50]  C. Petri Kommunikation mit Automaten , 1962 .

[51]  Jan C. WillemsInstitute The Computational Complexity of Decentralized Discrete-Event Control Problems , 1993 .

[52]  K. Mani Chandy,et al.  Deadlock Absence Proofs for Networks of Communicating Processes , 1979, Inf. Process. Lett..

[53]  Stéphane Lafortune,et al.  The infimal closed controllable superlanguage and its application in supervisory control , 1990 .

[54]  C. A. R. Hoare,et al.  Communicating sequential processes , 1978, CACM.

[55]  T. Ushio Feedback logic for discrete event systems with arbitrary control patterns , 1990 .

[56]  Dan Ionescu,et al.  Optimal supervision of discrete event systems in a temporal logic framework , 1995, IEEE Transactions on Systems, Man, and Cybernetics.

[57]  Walter Murray Wonham,et al.  On observability of discrete-event systems , 1988, Inf. Sci..

[58]  W. Wonham,et al.  The infimal prefix-closed and observable superlanguage of given language , 1991 .

[60]  W. M. Wonham,et al.  Modular supervisory control of discrete-event systems , 1988, Math. Control. Signals Syst..

[61]  W. M. Wonham,et al.  A framework for real-time discrete event control , 1990 .

[62]  Bruce H. Krogh,et al.  Synthesis of feedback control logic for a class of controlled Petri nets , 1990 .

[63]  W. M. Wonham,et al.  The control of discrete event systems , 1989 .

[64]  Robert W. Floyd,et al.  Assigning meaning to programs , 1967 .

[65]  P. Ramadge,et al.  Modular feedback logic for discrete event systems , 1987 .

[66]  A. Prasad Sistla,et al.  Automatic verification of finite state concurrent system using temporal logic specifications: a practical approach , 1983, POPL '83.

[67]  Amir Pnueli,et al.  On the Formal Semantics of Statecharts (Extended Abstract) , 1987, LICS.

[68]  P. Ramadge,et al.  Modular Supervisory Control of Discrete Event Systems , 1988 .

[69]  W. M. Wonham,et al.  Control problems in a temporal logic framework , 1986 .

[70]  Pravin Varaiya,et al.  Finitely recursive process models for discrete event systems , 1988 .

[71]  C. A. R. Hoare,et al.  An axiomatic basis for computer programming , 1969, CACM.

[72]  Siddhartha Mukhopadhyay,et al.  An extended finitely recursive process model for discrete event systems , 1995, IEEE Transactions on Systems, Man, and Cybernetics.

[73]  Panos J. Antsaklis,et al.  Stability and stabilizability of discrete event dynamic systems , 1991, JACM.

[74]  Luca Ferrarini,et al.  A new approach to modular liveness analysis conceived for large logic controllers' design , 1994, IEEE Trans. Robotics Autom..

[75]  S. Chung,et al.  Limited lookahead policies in supervisory control of discrete event systems , 1992 .

[76]  Robert S. Boyer,et al.  The Correctness Problem in Computer Science , 1982 .

[77]  Enke Chen,et al.  On nonconflicting languages that arise in supervisory control of discrete event systems , 1991 .

[78]  MengChu Zhou,et al.  A hybrid methodology for synthesis of Petri net models for manufacturing systems , 1992, IEEE Trans. Robotics Autom..

[79]  Shigemasa Takai,et al.  Static-state feedback control of discrete-event systems under partial observation , 1995, IEEE Trans. Autom. Control..

[80]  Doron Drusinsky,et al.  Using statecharts for hardware description and synthesis , 1989, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[81]  Matthew Hennessy,et al.  Algebraic theory of processes , 1988, MIT Press series in the foundations of computing.

[82]  Alan S. Willsky,et al.  Output stabilizability of discrete-event dynamic systems , 1991 .